
Chapter

5 Fundamental Techniques

Contents

5.1 The Greedy Method 259

5.1.1 The Fractional Knapsack Problem 259

5.1.2 Task Scheduling . 261

5.2 Divide-and-Conquer 263

5.2.1 Divide-and-Conquer Recurrence Equations 263

5.2.2 Integer Multiplication 270

5.2.3 Matrix Multiplication 272

5.3 Dynamic Programming 274

5.3.1 Matrix Chain-Product 274

5.3.2 The General Technique 278

5.3.3 The 0-1 Knapsack Problem 278

5.4 Exercises . 282

258 Chapter 5. Fundamental Techniques

A popular television network broadcasts two different shows about carpentry.
In one show, the host builds furniture using specialized power tools, and in the other
the host builds furniture using general-purpose hand tools. The specialized tools,
used in the first show, are good at the jobs they are intended for, but none of them
is very versatile. The tools in the second show are fundamental, however, because
they can be used effectively for a wide variety of different tasks.

These two television shows provide an interesting metaphor for data structure
and algorithm design. There are some algorithmic tools that are quite specialized.
They are good for the problems they are intended to solve, but they are not very
versatile. There are other algorithmic tools, however, that arefundamentalin that
they can be applied to a wide variety of different data structure and algorithm design
problems. Learning to use these fundamental techniques is a craft, and this chapter
is dedicated to developing the knowledge for using these techniques effectively.

The fundamental techniques covered in this chapter are the greedy method,
divide-and-conquer, and dynamic programming. These techniques are versatile,
and examples are given both in this chapter and in other chapters of this book.

The greedy method is used in algorithms for weighted graphs discussed in
Chapter 7, as well as a data compression problem presented in Section 9.3. The
main idea of this technique, as the name implies, is to make a series of greedy
choices in order to construct an optimal solution (or close to optimal solution) for a
given problem. In this chapter, we give the general structure for the greedy method
and show how it can be applied to knapsack and scheduling problems.

Divide-and-conquer is used in the merge-sort and quick-sort algorithms of Chap-
ter 4. The general idea behind this technique is to solve a given problem by dividing
it into a small number of similar subproblems, recursively solve each of the sub-
problems until they are small enough to solve by brute force, and, after the recursive
calls return, merge all the subproblems together to derive a solution to the original
problem. In this chapter, we show how to design and analyze general divide-and-
conquer algorithms and we give additional applications of this technique to the
problems of multiplying big integers and large matrices. We also give a number of
techniques for solving divide-and-conquer recurrence equations, including a gen-
eral master theorem that can be applied to a variety of equations.

The dynamic programming technique might at first seem a bit mysterious, but
it is quite powerful. The main idea is to solve a given problem by characterizing its
subproblems using a small set of integer indices. The goal of this characterization
is to allow an optimal solution to a subproblem to be defined by the combination of
(possibly overlapping) solutions to even smaller subproblems. If we can construct
such a characterization, which is the hardest step in using the dynamic program-
ming technique, then we can build a rather straightforward algorithm that builds up
larger subproblem solutions from smaller ones. This technique underlies the Floyd-
Warshall transitive closure algorithm of Chapter 6. In this chapter, we describe the
general framework of dynamic programming and give several applications, includ-
ing to the 0-1 knapsack problem.

5.1. The Greedy Method 259

5.1 The Greedy Method

The first algorithmic technique we consider in this chapter is thegreedy method.
We characterize this greedy method design pattern in terms of a generalgreedy-
choiceproperty, and we give two applications of its use.

The greedy method is applied to optimization problems, that is, problems that
involve searching through a set ofconfigurations to find one that minimizes or
maximizes anobjective functiondefined on these configurations. The general for-
mula of the greedy method could not be simpler. In order to solve a given optimiza-
tion problem, we proceed by a sequence of choices. The sequence starts from some
well-understood starting configuration, and then iteratively makes the decision that
seems best from all of those that are currently possible.

This greedy approach does not always lead to an optimal solution. But there
are several problems that it does work optimally for, and such problems are said
to possess thegreedy-choiceproperty. This is the property that a global optimal
configuration can be reached by a series of locally optimal choices (that is, choices
that are the best from among the possibilities available at the time), starting from a
well-defined configuration.

5.1.1 The Fractional Knapsack Problem

Consider thefractional knapsackproblem, where we are given a setSof n items,
such that each itemi has a positive benefitbi and a positive weightwi , and we wish
to find the maximum-benefit subset that does not exceed a given weightW. If we
are restricted to entirely accepting or rejecting each item, then we would have the
0-1 version of this problem (for which we give a dynamic programming solution
in Section 5.3.3). Let us now allow ourselves to take arbitrary fractions of some
elements, however. The motivation for this fractional knapsack problem is that we
are going on a trip and we have a single knapsack that can carry items that together
have weight at mostW. In addition, we are allowed to break items into fractions
arbitrarily. That is, we can take an amountxi of each itemi such that

0≤ xi ≤ wi for eachi ∈ S and ∑
i∈S

xi ≤W.

The total benefit of the items taken is determined by the objective function

∑
i∈S

bi(xi/wi).

Consider, for example, a student who is going to an outdoor sporting event and
must fill a knapsack full of foodstuffs to take along. Each candidate foodstuff is
something that can be easily divided into fractions, such as soda pop, potato chips,
popcorn, and pizza.

260 Chapter 5. Fundamental Techniques

Algorithm FractionalKnapsack(S,W):
Input: SetSof items, such that each itemi ∈ Shas a positive benefitbi and a

positive weightwi; positive maximum total weightW
Output: Amountxi of each itemi ∈ Sthat maximizes the total benefit while not

exceeding the maximum total weightW

for each itemi ∈ Sdo
xi ← 0
vi ← bi/wi {value indexof item i}

w← 0 {total weight}
while w < W do

remove fromSan itemi with highest value index {greedy choice}
a←min{wi,W−w} {more thanW−w causes a weight overflow}
xi ← a
w← w+a

Algorithm 5.1: A greedy algorithm for the fractional knapsack problem.

This is one place where greed is good, for we can solve the fractional knapsack
problem using the greedy approach shown in Algorithm 5.1.

The FractionalKnapsack algorithm can be implemented inO(nlogn) time,
wheren is the number of items inS. Specifically, we use a heap-based priority
queue (Section 2.4.3) to store the items ofS, where the key of each item is its value
index. With this data structure, each greedy choice, which removes the item with
greatest value index, takesO(logn) time.

To see that the fractional knapsack problem satisfies the greedy-choice property,
suppose that there are two itemsi and j such that

xi < wi , xj > 0, and vi < vj .

Let

y = min{wi−xi ,xj}.
We could then replace an amounty of item j with an equal amount of itemi, thus
increasing the total benefit without changing the total weight. Therefore, we can
correctly compute optimal amounts for the items by greedily choosing items with
the largest value index. This leads to the following theorem.

Theorem 5.1: Given a collectionSof n items, such that each itemi has a benefit
bi and weightwi, we can construct a maximum-benefit subset ofS, allowing for
fractional amounts, that has a total weightW in O(nlogn) time.

This theorem shows how efficiently we can solve the fractional version of the
knapsack problem. The all-or-nothing, or “0-1” version of the knapsack problem
does not satisfy the greedy choice property, however, and solving this version of
the problem is much harder, as we explore in Sections 5.3.3 and 13.3.4.

5.1. The Greedy Method 261

5.1.2 Task Scheduling

Let us consider another optimization problem. Suppose we are given a setT of n
tasks, such that each taski has astart time, si , and a finish time,fi (wheresi < fi).
Taski must start at timesi and it is guaranteed to be finished by timefi . Each task
has to be performed on amachineand each machine can execute only one task at
a time. Two tasksi and j arenonconflicting if fi ≤ sj or f j ≤ si . Two tasks can be
scheduled to be executed on the same machine only if they are nonconflicting.

The task schedulingproblem we consider here is to schedule all the tasks in
T on the fewest machines possible in a nonconflicting way. Alternatively, we can
think of the tasks as meetings that we must schedule in as few conference rooms as
possible. (See Figure 5.2.)

1 98765432

Machine 1

Machine 3

Machine 2

Figure 5.2: An illustration of a solution to the task scheduling prob-
lem, for tasks whose collection of pairs of start times and finish times is
{(1,3), (1,4), (2,5), (3,7), (4,7), (6,9), (7,8)}.

In Algorithm 5.3, we describe a simple greedy algorithm for this problem.

Algorithm TaskSchedule(T):
Input: A setT of tasks, such that each task has a start timesi and a finish timefi
Output: A nonconflicting schedule of the tasks inT using a minimum number

of machines

m← 0 {optimal number of machines}
while T 6= ∅ do

remove fromT the taski with smallest start timesi

if there is a machinej with no task conflicting with taski then
schedule taski on machinej

else
m←m+1 {add a new machine}
schedule taski on machinem

Algorithm 5.3: A greedy algorithm for the task scheduling problem.

262 Chapter 5. Fundamental Techniques

Correctness of Greedy Task Scheduling

In the algorithmTaskSchedule, we begin with no machines and we consider the
tasks in a greedy fashion, ordered by their start times. For each taski, if we have a
machine that can handle taski, then we schedulei on that machine. Otherwise, we
allocate a new machine, schedulei on it, and repeat this greedy selection process
until we have considered all the tasks inT.

The fact that the aboveTaskSchedule algorithm works correctly is established
by the following theorem.

Theorem 5.2: Given a set ofn tasks specified by their start and finish times, Al-
gorithmTaskSchedule produces a schedule of the tasks with the minimum number
of machines inO(nlogn) time.

Proof: We can show that the above simple greedy algorithm,TaskSchedule, finds
an optimal schedule on the minimum number of machines by a simple contradiction
argument.

So, suppose the algorithm does not work. That is, suppose the algorithm finds
a nonconflicting schedule usingk machines but there is a nonconflicting schedule
that uses onlyk−1 machines. Letk be the last machine allocated by our algorithm,
and leti be the first task scheduled onk. By the structure of the algorithm, when
we scheduledi, each of the machines 1 throughk−1 contained tasks that conflict
with i. Since they conflict withi and because we consider tasks ordered by their
start times, all the tasks currently conflicting with taski must have start times less
than or equal tosi , the start time ofi, and have finish times aftersi . In other words,
these tasks not only conflict with taski, they all conflict with each other. But this
means we havek tasks in our setT that conflict with each other, which implies
it is impossible for us to schedule all the tasks inT using onlyk− 1 machines.
Therefore,k is the minimum number of machines needed to schedule all the tasks
in T.

We leave as a simple exercise (R-5.2) the job of showing how to implement the
Algorithm TaskSchedule in O(nlogn) time.

We consider several other applications of the greedy method in this book, in-
cluding two problems in string compression (Section 9.3), where the greedy ap-
proach gives rise to a construction known as Huffman coding, and graph algorithms
(Section 7.3), where the greedy approach is used to solve shortest path and mini-
mum spanning tree problems.

The next technique we discuss is the divide-and-conquer technique, which is a
general methodology for using recursion to design efficient algorithms.

5.2. Divide-and-Conquer 263

5.2 Divide-and-Conquer

Thedivide-and-conquertechnique involves solving a particular computational prob-
lem by dividing it into one or more subproblems of smaller size, recursively solving
each subproblem, and then “merging” or “marrying” the solutions to the subprob-
lem(s) to produce a solution to the original problem.

We can model the divide-and-conquer approach by using a parametern to de-
note the size of the original problem, and letS(n) denote this problem. We solve
the problemS(n) by solving a collection ofk subproblemsS(n1), S(n2), . . ., S(nk),
whereni < n for i = 1, . . . ,k, and then merging the solutions to these subproblems.

For example, in the classic merge-sort algorithm (Section 4.1),S(n) denotes the
problem of sorting a sequence ofn numbers. Merge-sort solves problemS(n) by
dividing it into two subproblemsS(bn/2c) andS(dn/2e), recursively solving these
two subproblems, and then merging the resulting sorted sequences into a single
sorted sequence that yields a solution toS(n). The merging step takesO(n) time.
This, the total running time of the merge-sort algorithm isO(nlogn).

As with the merge-sort algorithm, the general divide-and-conquer technique
can be used to build algorithms that have fast running times.

5.2.1 Divide-and-Conquer Recurrence Equations

To analyze the running time of a divide-and-conquer algorithm we utilize arecur-
rence equation(Section 1.1.4). That is, we let a functionT(n) denote the running
time of the algorithm on an input of sizen, and characterizeT(n) using an equation
that relatesT(n) to values of the functionT for problem sizes smaller thann. In
the case of the merge-sort algorithm, we get the recurrence equation

T(n) =
{

b if n < 2
2T(n/2)+bn if n≥ 2,

for some constantb > 0, taking the simplifying assumption thatn is a power of 2.
In fact, throughout this section, we take the simplifying assumption thatn is an
appropriate power, so that we can avoid using floor and ceiling functions. Every
asymptotic statement we make about recurrence equations will still be true, even if
we relax this assumption, but justifying this fact formally involves long and boring
proofs. As we observed above, we can show thatT(n) is O(nlogn) in this case. In
general, however, we will possibly get a recurrence equation that is more challeng-
ing to solve than this one. Thus, it is useful to develop some general ways of solving
the kinds of recurrence equations that arise in the analysis of divide-and-conquer
algorithms.

264 Chapter 5. Fundamental Techniques

The Iterative Substitution Method

One way to solve a divide-and-conquer recurrence equation is to use theiterative
substitution method, which is more colloquially known as the “plug-and-chug”
method. In using this method, we assume that the problem sizen is fairly large
and we then substitute the general form of the recurrence for each occurrence of
the functionT on the right-hand side. For example, performing such a substitution
with the merge-sort recurrence equation yields the equation

T(n) = 2(2T(n/22)+b(n/2))+bn

= 22T(n/22)+2bn.

Plugging the general equation forT in again yields the equation

T(n) = 22(2T(n/23)+b(n/22))+2bn

= 23T(n/23)+3bn.

The hope in applying the iterative substitution method is that, at some point, we
will see a pattern that can be converted into a general closed-form equation (with
T only appearing on the left-hand side). In the case of the merge-sort recurrence
equation, the general form is

T(n) = 2iT(n/2i)+ ibn.

Note that the general form of this equation shifts to the base case,T(n) = b, when
n = 2i , that is, wheni = logn, which implies

T(n) = bn+bnlogn.

In other words,T(n) is O(nlogn). In a general application of the iterative substitu-
tion technique, we hope that we can determine a general pattern forT(n) and that
we can also figure out when the general form ofT(n) shifts to the base case.

From a mathematical point of view, there is one point in the use of the iterative
substitution technique that involves a bit of a logical “jump.” This jump occurs at
the point where we try to characterize the general pattern emerging from a sequence
of substitutions. Often, as was the case with the merge-sort recurrence equation,
this jump is quite reasonable. Other times, however, it may not be so obvious what
a general form for the equation should look like. In these cases, the jump may
be more dangerous. To be completely safe in making such a jump, we must fully
justify the general form of the equation, possibly using induction. Combined with
such a justification, the iterative substitution method is completely correct and an
often useful way of characterizing recurrence equations. By the way, the colloqui-
alism “plug-and-chug,” used to describe the iterative substitution method, comes
from the way this method involves “plugging” in the recursive part of an equation
for T(n) and then often “chugging” through a considerable amount of algebra in
order to get this equation into a form where we can infer a general pattern.

5.2. Divide-and-Conquer 265

The Recursion Tree

Another way of characterizing recurrence equations is to use therecursion tree
method. Like the iterative substitution method, this technique uses repeated sub-
stitution to solve a recurrence equation, but it differs from the iterative substitution
method in that, rather than being an algebraic approach, it is a visual approach. In
using the recursion tree method, we draw a treeR where each node represents a
different substitution of the recurrence equation. Thus, each node inR has a value
of the argumentn of the functionT(n) associated with it. In addition, we associate
an overheadwith each nodev in R, defined as the value of the nonrecursive part
of the recurrence equation forv. For divide-and-conquer recurrences, the overhead
corresponds to the running time needed to merge the subproblem solutions coming
from the children ofv. The recurrence equation is then solved by summing the
overheads associated with all the nodes ofR. This is commonly done by first sum-
ming values across the levels ofR and then summing up these partial sums for all
the levels ofR.

Example 5.3: Consider the following recurrence equation:

T(n) =
{

b if n < 3
3T(n/3)+bn if n≥ 3.

This is the recurrence equation that we get, for example, by modifying the merge-
sort algorithm so that we divide an unsorted sequence into three equal-sized se-
quences, recursively sort each one, and then do a three-way merge of three sorted
sequences to produce a sorted version of the original sequence. In the recursion tree
R for this recurrence, each internal nodev has three children and has a size and an
overhead associated with it, which corresponds to the time needed to merge the sub-
problem solutions produced byv’s children. We illustrate the treeR in Figure 5.4.
Note that the overheads of the nodes of each level sum tobn. Thus, observing that
the depth ofR is log3n, we have thatT(n) is O(nlogn).

Overhead

bn

bn

bn

Figure 5.4: The recursion treeR used in Example 5.3, where we show the cumula-
tive overhead of each level.

266 Chapter 5. Fundamental Techniques

The Guess-and-Test Method

Another method for solving recurrence equations is theguess-and-testtechnique.
This technique involves first making an educated guess as to what a closed-form
solution of the recurrence equation might look like and then justifying that guess,
usually by induction. For example, we can use the guess-and-test method as a kind
of “binary search” for finding good upper bounds on a given recurrence equation.
If the justification of our current guess fails, then it is possible that we need to use
a faster-growing function, and if our current guess is justified “too easily,” then it
is possible that we need to use a slower-growing function. However, using this
technique requires our being careful, in each mathematical step we take, in trying
to justify that a certain hypothesis holds with respect to our current “guess.” We
explore an application of the guess-and-test method in the examples that follow.

Example 5.4: Consider the following recurrence equation (assuming the base case
T(n) = b for n < 2):

T(n) = 2T(n/2)+bnlogn.

This looks very similar to the recurrence equation for the merge-sort routine, so we
might make the following as our first guess:

First guess:T(n)≤ cnlogn,

for some constantc > 0. We can certainly choosec large enough to make this true
for the base case, so consider the case whenn≥ 2. If we assume our first guess is
an inductive hypothesis that is true for input sizes smaller thann, then we have

T(n) = 2T(n/2)+bnlogn

≤ 2(c(n/2) log(n/2))+bnlogn

= cn(logn− log2)+bnlogn

= cnlogn−cn+bnlogn.

But there is no way that we can make this last line less than or equal tocnlogn for
n≥ 2. Thus, this first guess was not sufficient. Let us therefore try

Better guess:T(n) ≤ cnlog2n,

for some constantc > 0. We can again choosec large enough to make this true
for the base case, so consider the case whenn≥ 2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thenn, then we have

T(n) = 2T(n/2)+bnlogn

≤ 2(c(n/2) log2(n/2))+bnlogn

= cn(log2 n−2logn+1)+bnlogn

= cnlog2 n−2cnlogn+cn+bnlogn

≤ cnlog2 n,

providedc≥ b. Thus, we have shown thatT(n) is indeedO(nlog2 n) in this case.

5.2. Divide-and-Conquer 267

We must take care in using this method. Just because one inductive hypothesis
for T(n) does not work, that does not necessarily imply that another one propor-
tional to this one will not work.

Example 5.5: Consider the following recurrence equation (assuming the base case
T(n) = b for n < 2):

T(n) = 2T(n/2)+ logn.

This recurrence is the running time for the bottom-up heap construction discussed
in Section 2.4.4, which we have shown isO(n). Nevertheless, if we try to prove
this fact with the most straightforward inductive hypothesis, we will run into some
difficulties. In particular, consider the following:

First guess:T(n)≤ cn,

for some constantc > 0. We can choosec large enough to make this true for the
base case, certainly, so consider the case whenn≥ 2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thann, then we have

T(n) = 2T(n/2)+ logn

≤ 2(c(n/2))+ logn

= cn+ logn.

But there is no way that we can make this last line less than or equal tocn for n≥ 2.
Thus, this first guess was not sufficient, even thoughT(n) is indeedO(n). Still, we
can show this fact is true by using

Better guess:T(n)≤ c(n− logn),

for some constantc > 0. We can again choosec large enough to make this true for
the base case; in fact, we can show that it is true any timen < 8. So consider the
case whenn≥ 8. If we assume this guess as an inductive hypothesis that is true for
input sizes smaller thann, then we have

T(n) = 2T(n/2)+ logn

≤ 2c((n/2)− log(n/2))+ logn

= cn−2clogn+2c+ logn

= c(n− logn)−clogn+2c+ logn

≤ c(n− logn),

providedc≥ 3 andn≥ 8. Thus, we have shown thatT(n) is indeedO(n) in this
case.

The guess-and-test method can be used to establish either an upper or lower
bound for the asymptotic complexity of a recurrence equation. Even so, as the
above example demonstrates, it requires that we have developed some skill with
mathematical induction.

268 Chapter 5. Fundamental Techniques

The Master Method

Each of the methods described above for solving recurrence equations is ad hoc
and requires mathematical sophistication in order to be used effectively. There is,
nevertheless, one method for solving divide-and-conquer recurrence equations that
is quite general and does not require explicit use of induction to apply correctly. It
is themaster method. The master method is a “cook-book” method for determining
the asymptotic characterization of a wide variety of recurrence equations. Namely,
it is used for recurrence equations of the form

T(n) =
{

c if n < d
aT(n/b)+ f (n) if n≥ d,

whered ≥ 1 is an integer constant,a > 0, c > 0, andb > 1 are real constants, and
f (n) is a function that is positive forn≥ d. Such a recurrence equation would arise
in the analysis of a divide-and-conquer algorithm that divides a given problem into
a subproblems of size at mostn/b each, solves each subproblem recursively, and
then “merges” the subproblem solutions into a solution to the entire problem. The
function f (n), in this equation, denotes the total additional time needed to divide
the problem into subproblems and merge the subproblem solutions into a solution to
the entire problem. Each of the recurrence equations given above uses this form, as
do each of the recurrence equations used to analyze divide-and-conquer algorithms
given earlier in this book. Thus, it is indeed a general form for divide-and-conquer
recurrence equations.

The master method for solving such recurrence equations involves simply writ-
ing down the answer based on whether one of the three cases applies. Each case is
distinguished by comparingf (n) to the special functionnlogb a (we will show later
why this special function is so important).

Theorem 5.6 [The Master Theorem]: Let f (n) andT(n) be defined as above.

1. If there is a small constantε > 0, such thatf (n) is O(nlogb a−ε), thenT(n) is
Θ(nlogb a).

2. If there is a constantk≥ 0, such thatf (n) is Θ(nlogb a logkn), thenT(n) is
Θ(nlogb a logk+1n).

3. If there are small constantsε > 0 andδ < 1, such thatf (n) is Ω(nlogb a+ε)
anda f(n/b) ≤ δ f (n), for n≥ d, thenT(n) is Θ(f (n)).

Case 1 characterizes the situation wheref (n) is polynomially smaller than the
special function,nlogb a. Case 2 characterizes the situation whenf (n) is asymptoti-
cally close to the special function, and Case 3 characterizes the situation whenf (n)
is polynomially larger than the special function.

5.2. Divide-and-Conquer 269

We illustrate the usage of the master method with a few examples (with each
taking the assumption thatT(n) = c for n < d, for constantsc≥ 1 andd≥ 1).

Example 5.7: Consider the recurrence

T(n) = 4T(n/2)+n.

In this case,nlogb a = nlog2 4 = n2. Thus, we are in Case 1, forf (n) is O(n2−ε) for
ε = 1. This means thatT(n) is Θ(n2) by the master method.

Example 5.8: Consider the recurrence

T(n) = 2T(n/2)+nlogn,

which is one of the recurrences given above. In this case,nlogb a = nlog2 2 = n.
Thus, we are in Case 2, withk = 1, for f (n) is Θ(nlogn). This means thatT(n) is
Θ(nlog2 n) by the master method.

Example 5.9: Consider the recurrence

T(n) = T(n/3)+n,

which is the recurrence for a geometrically decreasing summation that starts withn.
In this case,nlogb a = nlog3 1 = n0 = 1. Thus, we are in Case 3, forf (n) is Ω(n0+ε),
for ε = 1, anda f(n/b) = n/3 = (1/3) f (n). This means thatT(n) is Θ(n) by the
master method.

Example 5.10: Consider the recurrence

T(n) = 9T(n/3)+n2.5.

In this case,nlogb a = nlog3 9 = n2. Thus, we are in Case 3, sincef (n) is Ω(n2+ε)
(for ε = 1/2) anda f(n/b) = 9(n/3)2.5 = (1/3)1/2 f (n). This means thatT(n) is
Θ(n2.5) by the master method.

Example 5.11: Finally, consider the recurrence

T(n) = 2T(n1/2)+ logn.

Unfortunately, this equation is not in a form that allows us to use the master method.
We can put it into such a form, however, by introducing the variablek = logn,
which lets us write

T(n) = T(2k) = 2T(2k/2)+k.

Substituting into this the equationS(k) = T(2k), we get that

S(k) = 2S(k/2)+k.

Now, this recurrence equation allows us to use master method, which specifies that
S(k) is O(k logk). Substituting back forT(n) impliesT(n) is O(lognlog logn).

Rather than rigorously prove Theorem 5.6, we instead discuss the justification
behind the master method at a high level.

270 Chapter 5. Fundamental Techniques

If we apply the iterative substitution method to the general divide-and-conquer
recurrence equation, we get

T(n) = aT(n/b)+ f (n)
= a(aT(n/b2)+ f (n/b))+ f (n) = a2T(n/b2)+a f(n/b)+ f (n)
= a3T(n/b3)+a2 f (n/b2)+a f(n/b)+ f (n)

...

= alogb nT(1)+
logb n−1

∑
i=0

ai f (n/bi)

= nlogb aT(1)+
logb n−1

∑
i=0

ai f (n/bi),

where the last substitution is based on the identityalogb n = nlogb a. Indeed, this
equation is where the special function comes from. Given this closed-form char-
acterization ofT(n), we can intuitively see how each of the three cases is derived.
Case 1 comes from the situation whenf (n) is small and the first term above domi-
nates. Case 2 denotes the situation when each of the terms in the above summation
is proportional to the others, so the characterization ofT(n) is f (n) times a loga-
rithmic factor. Finally, Case 3 denotes the situation when the first term is smaller
than the second and the summation above is a sum of geometrically decreasing
terms that start withf (n); hence,T(n) is itself proportional tof (n).

The proof of Theorem 5.6 formalizes this intuition, but instead of giving the
details of this proof, we present two applications of the master method below.

5.2.2 Integer Multiplication

We consider, in this subsection, the problem of multiplyingbig integers, that is,
integers represented by a large number of bits that cannot be handled directly by
the arithmetic unit of a single processor. Multiplying big integers has applications
to data security, where big integers are used in encryption schemes.

Given two big integersI and J represented withn bits each, we can easily
computeI +J andI −J in O(n) time. Efficiently computing the productI ·J using
the common grade-school algorithm requires, however,O(n2) time. In the rest
of this section, we show that by using the divide-and-conquer technique, we can
design a subquadratic-time algorithm for multiplying twon-bit integers.

Let us assume thatn is a power of two (if this is not the case, we can padI andJ
with 0’s). We can therefore divide the bit representations ofI andJ in half, with one
half representing thehigher-order bits and the other representing thelower-order
bits. In particular, if we splitI into Ih andIl andJ into Jh andJl , then

I = Ih2n/2 + Il ,

J = Jh2n/2 +Jl .

5.2. Divide-and-Conquer 271

Also, observe that multiplying a binary numberI by a power of two, 2k, is
trivial—it simply involves shifting left (that is, in the higher-order direction) the
numberI by k bit positions. Thus, provided a left-shift operation takes constant
time, multiplying an integer by 2k takesO(k) time.

Let us focus on the problem of computing the productI ·J. Given the expansion
of I andJ above, we can rewriteI ·J as

I ·J = (Ih2n/2 + Il) · (Jh2n/2 +Jl) = IhJh2n + Il Jh2n/2 + IhJl 2
n/2 + Il Jl .

Thus, we can computeI ·J by applying a divide-and-conquer algorithm that divides
the bit representations ofI and J in half, recursively computes the product four
products ofn/2 bits each (as described above), and then merges the solutions to
these subproducts inO(n) time using addition and multiplication by powers of two.
We can terminate the recursion when we get down to the multiplication of two 1-bit
numbers, which is trivial. This divide-and-conquer algorithm has a running time
that can be characterized by the following recurrence (forn≥ 2):

T(n) = 4T(n/2)+cn,

for some constantc > 0. We can then apply the master theorem to note that the
special functionnlogb a = nlog2 4 = n2 in this case; hence, we are in Case 1 andT(n)
is Θ(n2). Unfortunately, this is no better than the grade-school algorithm.

The master method gives us some insight into how we might improve this al-
gorithm. If we can reduce the number of recursive calls, then we will reduce the
complexity of the special function used in the master theorem, which is currently
the dominating factor in our running time. Fortunately, if we are a little more clever
in how we define subproblems to solve recursively, we can in fact reduce the num-
ber of recursive calls by one. In particular, consider the product

(Ih− Il) · (Jl −Jh) = IhJl − Il Jl − IhJh + Il Jh.

This is admittedly a strange product to consider, but it has an interesting property.
When expanded out, it contains two of the products we want to compute (namely,
IhJl andIl Jh) and two products that can be computed recursively (namely,IhJh and
Il Jl). Thus, we can computeI ·J as follows:

I ·J = IhJh2n +[(Ih− Il) · (Jl −Jh)+ IhJh + Il Jl]2n/2 + Il Jl .

This computation requires the recursive computation of three products ofn/2 bits
each, plusO(n) additional work. Thus, it results in a divide-and-conquer algorithm
with a running time characterized by the following recurrence equation (forn≥ 2):

T(n) = 3T(n/2)+cn,

for some constantc > 0.

Theorem 5.12: We can multiply twon-bit integers inO(n1.585) time.

Proof: We apply the master theorem with the special functionnlogb a = nlog2 3;
hence, we are in Case 1 andT(n) is Θ(nlog2 3), which is itselfO(n1.585).

272 Chapter 5. Fundamental Techniques

Using divide-and-conquer, we have designed an algorithm for integer multipli-
cation that is asymptotically faster than the straightforward quadratic-time method.
We can actually do even better than this, achieving a running time that is “almost”
O(nlogn), by using a more complex divide-and-conquer algorithm called thefast
Fourier transform, which we discuss in Section 10.4.

5.2.3 Matrix Multiplication

Suppose we are given twon×n matricesX andY, and we wish to compute their
productZ = XY, which is defined so that

Z[i, j] =
e−1

∑
k=0

X[i,k] ·Y[k, j],

which is an equation that immediately gives rise to a simpleO(n3) time algorithm.
Another way of viewing this product is in terms of submatrices. That is, let

us assume thatn is a power of two and let us partitionX, Y, andZ each into four
(n/2)× (n/2) matrices, so that we can rewriteZ = XY as(

I J
K L

)
=

(
A B
C D

)(
E F
G H

)
.

Thus,

I = AE+BG
J = AF +BH
K = CE+DG
L = CF +DH.

We can use this set of equations in a divide-and-conquer algorithm that com-
putesZ = XY by computingI , J, K, andL from the subarraysA throughG. By the
above equations, we can computeI , J, K, andL from the eight recursively com-
puted matrix products on(n/2)× (n/2) subarrays, plus four additions that can be
done inO(n2) time. Thus, the above set of equations give rise to a divide-and-
conquer algorithm whose running timeT(n) is characterized by the recurrence

T(n) = 8T(n/2)+bn2,

for some constantb> 0. Unfortunately, this equation implies thatT(n) is O(n3) by
the master theorem; hence, it is no better than the straightforward matrix multipli-
cation algorithm.

Interestingly, there is an algorithm known asStrassen’s Algorithm, that orga-
nizes arithmetic involving the subarraysA throughG so that we can computeI , J,
K, andL using just seven recursive matrix multiplications. It is somewhat myste-
rious how Strassen discovered these equations, but we can easily verify that they
work correctly.

5.2. Divide-and-Conquer 273

We begin Strassen’s Algorithm by defining seven submatrix products:

S1 = A(F−H)
S2 = (A+B)H
S3 = (C+D)E
S4 = D(G−E)
S5 = (A+D)(E+H)
S6 = (B−D)(G+H)
S7 = (A−C)(E+F).

Given these seven submatrix products, we can computeI as

I = S5 +S6 +S4−S2

= (A+D)(E+H)+ (B−D)(G+H)+D(G−E)− (A+B)H
= AE+DE+AH+DH +BG−DG+BH−DH +DG−DE−AH−BH
= AE+BG.

We can computeJ as

J = S1 +S2

= A(F−H)+ (A+B)H
= AF−AH+AH+BH
= AF +BH.

We can computeK as

K = S3 +S4

= (C+D)E+D(G−E)
= CE+DE+DG−DE
= CE+DG.

Finally, we can computeL as

L = S1−S7−S3+S5

= A(F−H)− (A−C)(E+F)− (C+D)E+(A+D)(E+H)
= AF−AH−AE+CE−AF +CF−CE−DE+AE+DE+AH+DH
= CF +DH.

Thus, we can computeZ = XY using seven recursive multiplications of matrices of
size(n/2)× (n/2). Thus, we can characterize the running timeT(n) as

T(n) = 7T(n/2)+bn2,

for some constantb > 0. Thus, by the master theorem, we have the following:

Theorem 5.13: We can multiply twon×n matrices inO(nlog7) time.

Thus, with a fair bit of additional complication, we can perform the multiplica-
tion for n×n matrices in timeO(n2.808), which iso(n3) time. As admittedly com-
plicated as Strassen’s matrix multiplication is, there are actually much more com-
plicated matrix multiplication algorithms, with running times as low asO(n2.376).

274 Chapter 5. Fundamental Techniques

5.3 Dynamic Programming

In this section, we discuss thedynamic programmingalgorithm-design technique.
This technique is similar to the divide-and-conquer technique, in that it can be
applied to a wide variety of different problems. Conceptually, the dynamic pro-
gramming technique is different from divide-and-conquer, however, because the
divide-and-conquer technique can be easily explained in a sentence or two, and can
be well illustrated with a single example. Dynamic programming takes a bit more
explaining and multiple examples before it can be fully appreciated.

The extra effort needed to fully appreciate dynamic programming is well worth
it, though. There are few algorithmic techniques that can take problems that seem
to require exponential time and produce polynomial-time algorithms to solve them.
Dynamic programming is one such technique. In addition, the algorithms that re-
sult from applications of the dynamic programming technique are usually quite
simple—often needing little more than a few lines of code to describe some nested
loops for filling in a table.

5.3.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-
namic programming technique, we start out instead by giving a classic, concrete
example. Suppose we are given a collection ofn two-dimensional matrices for
which we wish to compute the product

A = A0 ·A1 ·A2 · · ·An−1,

whereAi is a di × di+1 matrix, for i = 0,1,2, . . . ,n− 1. In the standard matrix
multiplication algorithm (which is the one we will use), to multiply ad×e-matrixB
times ane× f -matrixC, we compute the(i, j)th entry of the product as

e−1

∑
k=0

B[i,k] ·C[k, j].

This definition implies that matrix multiplication is associative, that is, it implies
that B · (C ·D) = (B ·C) ·D. Thus, we can parenthesize the expression forA any
way we wish and we will end up with the same answer. We will not necessar-
ily perform the same number of primitive (that is, scalar) multiplications in each
parenthesization, however, as is illustrated in the following example.

Example 5.14: Let B be a2×10-matrix, letC be a10×50-matrix, and letD be
a 50× 20-matrix. ComputingB · (C ·D) requires2 ·10·20+ 10·50·20 = 10400
multiplications, whereas computing(B·C) ·D requires2·10·50+2·50·20= 3000
multiplications.

5.3. Dynamic Programming 275

Thematrix chain-productproblem is to determine the parenthesization of the
expression defining the productA that minimizes the total number of scalar multi-
plications performed. Of course, one way to solve this problem is to simply enu-
merate all the possible ways of parenthesizing the expression forA and determine
the number of multiplications performed by each one. Unfortunately, the set of all
different parenthesizations of the expression forA is equal in number to the set of
all different binary trees that haven external nodes. This number is exponential in
n. Thus, this straightforward (“brute force”) algorithm runs in exponential time, for
there are an exponential number of ways to parenthesize an associative arithmetic
expression (the number is equal to thenth Catalan number, which isΩ(4n/n3/2)).

Defining Subproblems

We can improve the performance achieved by the brute force algorithm signifi-
cantly, however, by making a few observations about the nature of the matrix chain-
product problem. The first observation is that the problem can be split intosubprob-
lems. In this case, we can define a number of different subproblems, each of which
is to compute the best parenthesization for some subexpressionAi ·Ai+1 · · ·Aj . As
a concise notation, we useNi, j to denote the minimum number of multiplications
needed to compute this subexpression. Thus, the original matrix chain-product
problem can be characterized as that of computing the value ofN0,n−1. This obser-
vation is important, but we need one more in order to apply the dynamic program-
ming technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-
lem is that it is possible to characterize an optimal solution to a particular subprob-
lem in terms of optimal solutions to its subproblems. We call this property the
subproblem optimalitycondition.

In the case of the matrix chain-product problem, we observe that, no matter how
we parenthesize a subexpression, there has to be some final matrix multiplication
that we perform. That is, a full parenthesization of a subexpressionAi ·Ai+1 · · ·Aj

has to be of the form(Ai · · ·Ak) · (Ak+1 · · ·Aj), for somek ∈ {i, i + 1, . . . , j − 1}.
Moreover, for whicheverk is the right one, the products(Ai · · ·Ak) and(Ak+1 · · ·Aj)
must also be solved optimally. If this were not so, then there would be a global
optimal that had one of these subproblems solved suboptimally. But this is impos-
sible, since we could then reduce the total number of multiplications by replacing
the current subproblem solution by an optimal solution for the subproblem. This
observation implies a way of explicitly defining the optimization problem forNi, j

in terms of other optimal subproblem solutions. Namely, we can computeNi, j by
considering each placek where we could put the final multiplication and taking the
minimum over all such choices.

276 Chapter 5. Fundamental Techniques

Designing a Dynamic Programming Algorithm

The above discussion implies that we can characterize the optimal subproblem so-
lution Ni, j as

Ni, j = min
i≤k< j

{Ni,k +Nk+1, j +didk+1dj+1},
where we note that

Ni,i = 0,

since no work is needed for a subexpression comprising a single matrix. That is,Ni, j

is the minimum, taken over all possible places to perform the final multiplication,
of the number of multiplications needed to compute each subexpression plus the
number of multiplications needed to perform the final matrix multiplication.

The equation forNi, j looks similar to the recurrence equations we derive for
divide-and-conquer algorithms, but this is only a superficial resemblance, for there
is an aspect of the equationNi, j that makes it difficult to use divide-and-conquer
to computeNi, j . In particular, there is asharing of subproblemsgoing on that
prevents us from dividing the problem into completely independent subproblems
(as we would need to do to apply the divide-and-conquer technique). We can,
nevertheless, use the equation forNi, j to derive an efficient algorithm by computing
Ni, j values in a bottom-up fashion, and storing intermediate solutions in a table of
Ni, j values. We can begin simply enough by assigningNi,i = 0 for i = 0,1, . . . ,n−1.
We can then apply the general equation forNi, j to computeNi,i+1 values, since
they depend only onNi,i andNi+1,i+1 values, which are available. Given theNi,i+1

values, we can then compute theNi,i+2 values, and so on. Therefore, we can build
Ni, j values up from previously computed values until we can finally compute the
value ofN0,n−1, which is the number that we are searching for. The details of this
dynamic programmingsolution are given in Algorithm 5.5.

Algorithm MatrixChain(d0, . . . ,dn):
Input: Sequenced0, . . . ,dn of integers
Output: For i, j = 0, . . . ,n− 1, the minimum number of multiplicationsNi, j

needed to compute the productAi ·Ai+1 · · ·Aj , whereAk is adk×dk+1 matrix

for i← 0 ton−1 do
Ni,i ← 0

for b← 1 ton−1 do
for i← 0 ton−b−1 do

j← i +b
Ni, j ←+∞
for k← i to j−1 do

Ni, j ←min{Ni, j , Ni,k +Nk+1, j +didk+1dj+1}.
Algorithm 5.5: Dynamic programming algorithm for the matrix chain-product
problem.

5.3. Dynamic Programming 277

Analyzing the Matrix Chain-Product Algorithm

Thus, we can computeN0,n−1 with an algorithm that consists primarily of three
nested for-loops. The outside loop is executedn times. The loop inside is exe-
cuted at mostn times. And the inner-most loop is also executed at mostn times.
Therefore, the total running time of this algorithm isO(n3).

Theorem 5.15: Given a chain-product ofn two-dimensional matrices, we can
compute a parenthesization of this chain that achieves the minimum number of
scalar multiplications inO(n3) time.

Proof: We have shown above how we can compute the optimalnumberof scalar
multiplications. But how do we recover the actual parenthesization?

The method for computing the parenthesization itself is is actually quite straight-
forward. We modify the algorithm for computingNi, j values so that any time we
find a new minimum value forNi, j , we store, withNi, j , the indexk that allowed us
to achieve this minimum.

In Figure 5.6, we illustrate the way the dynamic programming solution to the
matrix chain-product problem fills in the arrayN.

i

j

i,k

k+1,j

i,j

+ didk+1dj+ 1

N

Figure 5.6: Illustration of the way the matrix chain-product dynamic-programming
algorithm fills in the arrayN.

Now that we have worked through a complete example of the use of the dy-
namic programming method, let us discuss the general aspects of the dynamic pro-
gramming technique as it can be applied to other problems.

278 Chapter 5. Fundamental Techniques

5.3.2 The General Technique

The dynamic programming technique is used primarily foroptimizationproblems,
where we wish to find the “best” way of doing something. Often the number of
different ways of doing that “something” is exponential, so a brute-force search
for the best is computationally infeasible for all but the smallest problem sizes.
We can apply the dynamic programming technique in such situations, however, if
the problem has a certain amount of structure that we can exploit. This structure
involves the following three components:

Simple Subproblems: There has to be some way of breaking the global optimiza-
tion problem into subproblems, each having a similar structure to the original
problem. Moreover, there should be a simple way of defining subproblems
with just a few indices, likei, j, k, and so on.

Subproblem Optimality: An optimal solution to the global problem must be a
composition of optimal subproblem solutions, using a relatively simple com-
bining operation. We should not be able to find a globally optimal solution
that contains suboptimal subproblems.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain
subproblems in common. Indeed, such overlap improves the efficiency of a
dynamic programming algorithm that stores solutions to subproblems.

Now that we have given the general components of a dynamic programming
algorithm, we next give another example of its use.

5.3.3 The 0-1 Knapsack Problem

Suppose a hiker is about to go on a trek through a rain forest carrying a single
knapsack. Suppose further that she knows the maximum total weightW that she
can carry, and she has a setSof n different useful items that she can potentially take
with her, such as a folding chair, a tent, and a copy of this book. Let us assume that
each itemi has an integer weightwi and a benefit valuebi , which is the utility value
that our hiker assigns to itemi. Her problem, of course, is to optimize the total
value of the setT of items that she takes with her, without going over the weight
limit W. That is, she has the following objective:

maximize ∑
i∈T

bi subject to ∑
i∈T

wi ≤W.

Her problem is an instance of the0-1 knapsack problem. This problem is called
a “0-1” problem, because each item must be entirely accepted or rejected. We
consider the fractional version of this problem in Section 5.1.1, and we study how
knapsack problems arise in the context of Internet auctions in Exercise R-5.12.

5.3. Dynamic Programming 279

A First Attempt at Characterizing Subproblems

We can easily solve the 0-1 knapsack problem inΘ(2n) time, of course, by enu-
merating all subsets ofS and selecting the one that has highest total benefit from
among all those with total weight not exceedingW. This would be an inefficient
algorithm, however. Fortunately, we can derive a dynamic programming algorithm
for the 0-1 knapsack problem that runs much faster than this in most cases.

As with many dynamic programming problems, one of the hardest parts of
designing such an algorithm for the 0-1 knapsack problem is to find a nice char-
acterization for subproblems (so that we satisfy the three properties of a dynamic
programming algorithm). To simplify the discussion, number the items inS as
1,2, . . . ,n and define, for eachk∈ {1,2, . . . ,n}, the subset

Sk = {items inS labeled 1,2, . . . ,k}.
One possibility is for us to define subproblems by using a parameterk so that sub-
problemk is the best way to fill the knapsack using only items from the setSk. This
is a valid subproblem definition, but it is not at all clear how to define an optimal
solution for indexk in terms of optimal subproblem solutions. Our hope would be
that we would be able to derive an equation that takes the best solution using items
from Sk−1 and considers how to add the itemk to that. Unfortunately, if we stick
with this definition for subproblems, then this approach is fatally flawed. For, as we
show in Figure 5.7, if we use this characterization for subproblems, then an optimal
solution to the global problem may actually contain a suboptimal subproblem.

(3,2) (5,4) (8,5) (10,9)

(8,5)(5,4) (4,3)(a)

(b)

(3,2)

20

Figure 5.7: An example showing that our first approach to defining a knapsack
subproblem does not work. The setS consists of five items denoted by the the
(weight, benefit) pairs(3,2), (5,4), (8,5), (4,3), and(10,9). The maximum total
weight isW = 20: (a) best solution with the first four items; (b) best solution with
the first five items. We shade each item in proportion to its benefit.

280 Chapter 5. Fundamental Techniques

A Better Subproblem Characterization

One of the reasons that defining subproblems only in terms of an indexk is fa-
tally flawed is that there is not enough information represented in a subproblem
to provide much help for solving the global optimization problem. We can correct
this difficulty, however, by adding a second parameterw. Let us therefore formulate
each subproblem as that of computingB[k,w], which is defined as the maximum to-
tal value of a subset ofSk from among all those subsets having total weightexactly
w. We haveB[0,w] = 0 for eachw≤W, and we derive the following relationship
for the general case

B[k,w] =
{

B[k−1,w] if wk > w
max{B[k−1,w], B[k−1,w−wk]+bk} else.

That is, the best subset ofSk that has total weightw is either the best subset ofSk−1

that has total weightw or the best subset ofSk−1 that has total weightw−wk plus
the itemk. Since the best subset ofSk that has total weightw must either contain
item k or not, one of these two choices must be the right choice. Thus, we have
a subproblem definition that is simple (it involves just two parameters,k andw)
and satisfies the subproblem optimization condition. Moreover, it has subproblem
overlap, for the optimal way of summing exactlyw to weight may be used by many
future subproblems.

In deriving an algorithm from this definition, we can make one additional ob-
servation, namely, that the definition ofB[k,w] is built fromB[k−1,w] and possibly
B[k−1,w−wk]. Thus, we can implement this algorithm using only a single arrayB,
which we update in each of a series of iterations indexed by a parameterk so that at
the end of each iterationB[w] = B[k,w]. This gives us Algorithm 5.8 (01Knapsack).

Algorithm 01Knapsack(S,W):
Input: SetS of n items, such that itemi has positive benefitbi and positive

integer weightwi; positive integer maximum total weightW
Output: For w = 0, . . . ,W, maximum benefitB[w] of a subset ofS with total

weightw

for w← 0 toW do
B[w]← 0

for k← 1 to n do
for w←W downtowk do

if B[w−wk]+bk > B[w] then
B[w]← B[w−wk]+bk

Algorithm 5.8: Dynamic programming algorithm for solving the 0-1 knapsack
problem.

5.3. Dynamic Programming 281

Analyzing the 0-1 Knapsack Dynamic Programming Algorithm

The running time of the01Knapsack algorithm is dominated by the two nested
for-loops, where the outer one iteratesn times and the inner one iterates at mostW
times. After it completes we can find the optimal value by locating the valueB[w]
that is greatest among allw≤W. Thus, we have the following:

Theorem 5.16: Given an integerW and a setS of n items, each of which has a
positive benefit and a positive integer weight, we can find the highest benefit subset
of Swith total weight at mostW in O(nW) time.

Proof: We have given Algorithm 5.8 (01Knapsack) for constructing thevalueof
the maximum-benefit subset ofSthat has total weight at mostW using an arrayB of
benefit values. We can easily convert our algorithm into one that outputs the items
in a best subset, however. We leave the details of this conversion as an exercise.

Pseudo-Polynomial-Time Algorithms

In addition to being another useful application of the dynamic programming tech-
nique, Theorem 5.16 states something very interesting. Namely, it states that the
running time of our algorithm depends on a parameterW that, strictly speaking, is
not proportional to the size of the input (then items, together with their weights and
benefits, plus thenumberW). Assuming thatW is encoded in some standard way
(such as a binary number), then it takes onlyO(logW) bits to encodeW. Moreover,
if W is very large (sayW = 2n), then this dynamic programming algorithm would
actually be asymptotically slower than the brute force method. Thus, technically
speaking, this algorithm is not a polynomial-time algorithm, for its running time is
not actually a function of thesizeof the input.

It is common to refer to an algorithm such as our knapsack dynamic program-
ming algorithm as being apseudo-polynomial timealgorithm, for its running time
depends on the magnitude of a number given in the input, not its encoding size. In
practice, such algorithms should run much faster than any brute-force algorithm,
but it is not correct to say they are true polynomial-time algorithms. In fact, there is
a theory known asNP-completeness, which is discussed in Chapter 13, that states
that it is very unlikely that anyone will ever find a true polynomial-time algorithm
for the 0-1 knapsack problem.

Elsewhere in this book, we give additional applications of the dynamic pro-
gramming technique for computing reachability in a directed graph (Section 6.4.2)
and for testing the similarity of two strings (Section 9.4).

282 Chapter 5. Fundamental Techniques

5.4 Exercises

Reinforcement

R-5.1 Let S= {a,b,c,d,e, f ,g} be a collection of objects with benefit-weight values
as follows:a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f :(7,1), g:(9,6).
What is an optimal solution to the fractional knapsack problem forS assuming
we have a sack that can hold objects with total weight 18? Show your work.

R-5.2 Describe how to implement theTaskSchedule method to run inO(nlogn) time.

R-5.3 Suppose we are given a set of tasks specified by pairs of the start times and finish
times asT = {(1,2),(1,3),(1,4),(2,5),(3,7),(4,9),(5,6),(6,8),(7,9)}. Solve
the task scheduling problem for this set of tasks.

R-5.4 Characterize each of the following recurrence equations using the master method
(assuming thatT(n) = c for n < d, for constantsc > 0 andd≥ 1).

a. T(n) = 2T(n/2)+ logn
b. T(n) = 8T(n/2)+n2

c. T(n) = 16T(n/2)+ (nlogn)4

d. T(n) = 7T(n/3)+n
e. T(n) = 9T(n/3)+n3logn

R-5.5 Use the divide-and-conqueralgorithm, from Section 5.2.2, to compute 10110011·
10111010 in binary. Show your work.

R-5.6 Use Strassen’s matrix multiplication algorithm to multiply the matrices

X =
(

3 2
4 8

)
and Y =

(
1 5
9 6

)
.

R-5.7 A complex numbera+bi, wherei =
√−1, can be represented by the pair(a,b).

Describe a method performing only three real-number multiplications to compute
the pair(e, f) representing the product ofa+bi andc+di.

R-5.8 Boolean matrices are matrices such that each entry is 0 or 1, and matrix multipli-
cation is performed by using AND for· and OR for+. Suppose we are given two
n× n random Boolean matricesA andB, so that the probability that any entry
in either is 1, is 1/k. Show that ifk is a constant, then there is an algorithm for
multiplying A andB whose expected running time isO(n2). What if k is n?

R-5.9 What is the best way to multiply a chain of matrices with dimensions that are
10×5, 5×2, 2×20, 20×12, 12×4, and 4×60? Show your work.

R-5.10 Design an efficient algorithm for the matrix chain multiplication problem that
outputs a fully parenthesized expression for how to multiply the matrices in the
chain using the minimum number of operations.

R-5.11 Solve Exercise R-5.1 for the 0-1 knapsack problem.

R-5.12 Sally is hosting an Internet auction to selln widgets. She receivesm bids, each
of the form “I wantki widgets fordi dollars,” for i = 1,2, . . . ,m. Characterize
her optimization problem as a knapsack problem. Under what conditions is this
a 0-1 versus fractional problem?

5.4. Exercises 283

Creativity

C-5.1 A native Australian named Anatjari wishes to cross a desert carrying only a sin-
gle water bottle. He has a map that marks all the watering holes along the way.
Assuming he can walkk miles on one bottle of water, design an efficient algo-
rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

C-5.2 Consider the singlemachine schedulingproblem where we are given a setT
of tasks specified by their start times and finish times, as in the task scheduling
problem, except now we have only one machine and we wish to maximize the
number of tasks that this single machine performs. Design a greedy algorithm
for this single machine scheduling problem and show that it is correct. What is
the running time of this algorithm?

C-5.3 Describe an efficient greedy algorithm for making change for a specified value
using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,
respectively. Argue why your algorithm is correct.

C-5.4 Give an example set of denominations of coins so that a greedy change making
algorithm will not use the minimum number of coins.

C-5.5 In theart gallery guardingproblem we are given a lineL that represents a long
hallway in an art gallery. We are also given a setX = {x0,x1, . . . ,xn−1} of real
numbers that specify the positions of paintings in this hallway. Suppose that a
single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). Design an algorithm for finding a placement of guards
that uses the minimum number of guards to guard all the paintings with positions
in X.

C-5.6 Design a divide-and-conquer algorithm for finding the minimum and the maxi-
mum element ofn numbers using no more than 3n/2 comparisons.

C-5.7 Given a setP of n teams in some sport, around-robin tournamentis a collection
of games in which each team plays each other team exactly once. Design an
efficient algorithm for constructing a round-robin tournament assumingn is a
power of 2.

C-5.8 Let a set of intervalsS= {[a0,b0], [a1,b1], . . . , [an−1,bn−1]} of the interval[0,1]
be given, with 0≤ ai < bi ≤ 1, for i = 0,1, . . . ,n− 1. Suppose further that we
assign a heighthi to each interval[ai ,bi] in S. Theupper envelopeof S is defined
to be a list of pairs[(x0,c0),(x1,c1),(x2,c2), . . . ,(xm,cm),(xm+1,0)], with x0 =
0 andxm+1 = 1, and ordered byxi values, such that, for each subintervals =
[xi ,xi+1] the height of the highest interval inScontainings is ci , for i = 0,1, . . . ,m.
Design anO(nlogn)-time algorithm for computing the upper envelope ofS.

C-5.9 How can we modify the dynamic programming algorithm from simply comput-
ing the best benefit value for the 0-1 knapsack problem to computing the assign-
ment that gives this benefit?

C-5.10 Suppose we are given a collectionA = {a1,a2, . . . ,an} of n positive integers that
add up toN. Design anO(nN)-time algorithm for determining whether there is
a subsetB⊂ A, such that∑ai∈Bai = ∑ai∈A−Bai .

284 Chapter 5. Fundamental Techniques

C-5.11 Let P be a convex polygon (Section 12.5.1). Atriangulation of P is an addition
of diagonals connecting the vertices ofP so that each interior face is a triangle.
Theweightof a triangulation is the sum of the lengths of the diagonals. Assuming
that we can compute lengths and add and compare them in constant time, give an
efficient algorithm for computing a minimum-weight triangulation ofP.

C-5.12 A grammar G is a way of generating strings of “terminal” characters from a
nonterminal symbolS, by applying simple substitution rules, calledproductions.
If B→ β is a production, then we can convert a string of the formαBγ into the
stringαβγ. A grammar is inChomsky normal formif every production is of the
form “A→ BC” or “ A→ a,” whereA, B, andC are nonterminal characters anda
is a terminal character. Design anO(n3)-time dynamic programming algorithm
for determining if stringx= x0x1 · · ·xn−1 can be generated from start symbolS.

C-5.13 Suppose we are given ann-node rooted treeT, such that each nodev in T is given
a weightw(v). An independent setof T is a subsetSof the nodes ofT such that
no node inS is a child or parent of any other node inS. Design an efficient
dynamic programming algorithm to find the maximum-weight independent set
of the nodes inT, where the weight of a set of nodes is simply the sum of the
weights of the nodes in that set. What is the running time of your algorithm?

Projects

P-5.1 Design and implement a big integer package supporting the four basic arithmetic
operations.

P-5.2 Implement a system for efficiently solving knapsack problems. Your system
should work for either fractional or 0-1 knapsack problems. Perform an experi-
mental analysis to test the efficiency of your system.

Chapter Notes

The term “greedy algorithm” was coined by Edmonds [64] in 1971, although the concept
existed before then. For more information about the greedy method and the theory that
supports it, which is known as matroid theory, please see the book by Papadimitriou and
Steiglitz [164].

The divide-and-conquer technique is a part of the folklore of data structure and al-
gorithm design. The master method for solving divide-and-conquer recurrences traces its
origins to a paper by Bentley, Haken, and Saxe [30]. The divide-and-conquer algorithm
for multiplying two large integers inO(n1.585) time is generally attributed to the Russians
Karatsuba and Ofman [111]. The asymptotically fastest known algorithm for multiplying
two n-digit numbers is an FFT-based algorithm by Sch¨onhage and Strassen [181] that runs
in O(nlognloglogn) time.

Dynamic programming was developed in the operations research community and for-
malized by Bellman [26]. The matrix chain-product solution we described is due to God-
bole [78]. The asymptotically fastest method is due to Hu and Shing [101, 102]. The dy-
namic programming algorithm for the knapsack problem is found in the book by Hu [100].
Hirchsberg [95] shows how to solve the longest common substring problem in the same
time given above, but with linear space (see also [56]).

