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(say y1) and, with this, Bob can color ys with a different color of y; in the
next move, winning the game, as there are k — 1 colors left to color C. If
Alice starts at another vertex of G’, Bob can ensure that Alice will color
s due to the parity of V' — (V U {s}). After this, he can use his winning
strategy in G (being the first to play there) and ensure that at least one
vertex in V' cannot be colored, winning the game. [

Unlike the proofs of PspACE-hardness of GEOGRAPHY and Convex Set
Forming games, in which the winning strategies were almost directly related
by the obtained reduction, in Theorem 5.6 the winning strategy of Bob in
G’ must take into account the possibility of Alice starting the coloring in
GG. By doing this, Alice prevents Bob from using the winning strategy he
had for the “Bob first” Coloring Game in G. In this case then, Bob uses a
strategy in G’ completely unrelated to the original and simply waits until
y1 or yo is colored.

This should be a constant concern in complexity proofs in games. In
order to obtain a reduction f from a game J; to a game Js (J; <p J2), a
player X with winning strategy in an instance ¢ of J; must have a winning
strategy in the instance f(i) of Jo regardless of how his opponent behaves,
which may mean having to adopt a new and completely different strategy
from the original strategy for Jj in .

5.4 EXPTIME-completeness and Universal Games

Stockmeyer and Chandra (1979) proved some of the first EXPTIME-
complete games in the paper “Provenly hard combinatorial games”, such as
the ASAT game (Alternating SAT)!Y. In this game, given a logical formula
® in CNF (Conjunctive Normal Form) over a set of variables X 4 U X g, with
initial values given, Alice and Bob alternately change the value of at most
one of the variables. In each turn, Alice can change the value of a variable
from X 4, while Bob can change the value of a variable in Xp. Alice wins
if she can make the formula true at some point; otherwise, Bob wins. To
ensure the game is finite, we can assume that Bob wins if any assignment
of values repeats during the game.

10 Game G¢ of (Stockmeyer and Chandra 1979), also called ABF (Alternating Boolean
Formula game) by Kinnersley (2015).
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Theorem 5.7 (Stockmeyer and Chandra 1979). The Alternating SAT game
(ASAT) is EXPTIME-complete.

Stockmeyer and Chandra (1979) classified EXPTIME-complete games as
Universal Games in the sense that “if Y denotes one of these games and
X denotes any member of a large class of combinatorial games (including
Chess, Go, and many other games of popular or mathematical interest),
then the problem of determining the outcome of X is reducible in polynomial
time to the problem of determining the outcome of Y.

The Activation game is EXPTIME-complete

We start with the following partizan game in graphs: the Activation
game. Let G be a graph in which every vertex is activated or deactivated.
The activation of a deactivated vertex v is a process in two steps: in the
1st step, v is activated but every neighbor of v is deactivated and, in the
2nd step, every deactivated vertex with no activated neighbor is activated.
It is synchronous: all vertices update their status at the same time. Note
that this affects only the vertices at distance 1 and 2 from v.

The Activation game is a partizan game in which the instance is a
graph G and an integer k. Some vertices of G are labeled A or B and
the others are unlabeled. The vertices of GG are in an initial configuration:
every vertex is activated or deactivated. Alice and Bob alternately activate
a deactivated vertex in such a way that Alice (resp. Bob) can only activate
vertices labeled A (resp. B). If the number of activated vertices is at most
k at the beginning of some turn, Alice wins. If some configuration repeats,
Bob wins. This game is easy in complete graphs K, and complete bipartite
graphs K, ,,, but in general it is very hard.

Theorem 5.8. The Activation game is EXPTIME-complete.

Proof. Tt is easy to see that it is in EXPTIME (Ex. 5.4). We obtain a
reduction from ASAT with formula ® over a set X4 U Xp of n variables.
Let £ = n. Also let G the following graph. For every variable z;, add to
G two vertices x; and Z;. Label x; and 7; with A if x; € X 4; otherwise,
label them with B. Also add the edge z;7;. For every clause c;, create the
unlabeled vertex c;. If the clause c; contains x;, add the edge x;c;. If the
clause c; contains 7;, add the edge Tjc;.

If z; is true in the initial configuration of ¢, make the vertex z; activated
and the vertex x; deactivated at the beginning. Otherwise, make the vertex
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x; deactivated and the vertex T; activated. If the clause c¢; is satisfied by
the initial configuration of ®, make the vertex c; deactivated; otherwise,
make it activated.

Notice that the activation of the vertex x; deactivates Z; and every
vertex c; neighbor of z;, and activates every vertex c, neighbor of 7; without
activated neighbors. Also, no deactivated vertex xy (resp. Ty) at distance
two from z; is activated, since Ty (resp. xy) is activated.

Therefore, the state activate or deactivate of a variable x; is related to its
value true or false. On the other hand, a clause vertex c¢; is activated (resp.
deactivated) if the clause ¢; is unsatisfied (resp. satisfied). Furthermore,
since either xz; or T; is activated at each turn for any variable x;, then the
number of activated vertices is at least K = n. Then, if all clauses are
satisfied, the number of activated vertices is exactly k = n.

If Alice wins ASAT, she can satisfy every clause of ® and, by following
the corresponding strategy in the Activation game, she can deactivate every
clause vertex, winning the game. If Bob wins ASAT, he guarantees that
there is at least one unsatisfied clause of ® at each turn and, by following
the corresponding strategy in the Activation game, he guarantees that there
is at least one activated clause vertex at each turn, winning the game. =

CopPs AND ROBBER is EXPTIME-complete

In Chapter 9, we will study in detail the Cops and Robber game (C&R).
In this game, a graph G and an integer k are given, and there are two
players: C (Cops) and R (Robber). Initially C places k cops on the vertices
of G and then R places a robber on a vertex of G. The players then
alternate moving their pieces between adjacent vertices of GG. A player is
allowed to decide not to move some of their pieces (or even all of them) on
their turn. The cops win if a cop occupies the same vertex of the robber at
some turn (in this case we say that the robber was captured). The robber
wins if he can avoid capture indefinitely. To ensure the game is finite, we
can assume that the robber wins if any configuration of the cops and the
robber repeats during the game.

Deciding whether player C has a winning strategy with k& cops on a
graph G = (V, E) can certainly be done by an exponential time algorithm
on the game tree (Berarducci and Intrigila 1993; Hahn and MacGillivray
2006). As seen in Chapter 1, the algorithm has polynomial time if %k is
constant. Therefore, C&R € EXPTIME.



