
Algoritmos Aproximativos - Definição padrão

Quatro ingredientes de um problema de otimização

▶ Conjunto de Instâncias

▶ Conjunto de Soluções Sol(I) para cada instância I

▶ Valor vaℓ(S) > 0 para cada solução S ∈ Sol(I)

▶ Tipo: minimização ou maximização

Objetivo: Dada uma instância I, encontrar uma solução ótima

S ∈ Sol(I): solução com valor ḿınimo ou máximo, dependendo do tipo.
Valor ótimo opt(I) é o valor de uma solução ótima de uma instância I.

Um algoritmo A para um problema de otimização é α-aproximativo

se produz uma solução A(I) tq vaℓ(A(I)) ≤ α · opt(I) (se min. (α ≥ 1))
ou vaℓ(A(I)) ≥ α · opt(I) (se max. (α ≤ 1))

DEFINIÇÃO PADRÃO



Algoritmos Aproximativos - Def. padrão versus alternativa

Quatro ingredientes de um problema de otimização

▶ Conjunto de Instâncias

▶ Conjunto de Soluções Sol(I) para cada instância I

▶ Valor vaℓ(S) > 0 para cada solução S ∈ Sol(I)

▶ Tipo: minimização ou maximização

DEFINIÇÃO: Dada uma instancia I e uma solução S ∈ Sol(I), seja

R(I,S) = max
{

opt(I)
vaℓ(S) ,

vaℓ(S)
opt(I)

}
≥ 1 ( performance ratio )

(razão de aproximação)

Um algoritmo A para um problema de otimização é α≥1-aproximativo

se produz uma solução A(I) tal que R(I,A(I)) ≤ α para toda instância I.

DEFINIÇÃO ALTERNATIVA. Embora possa parecer confuso com a“definição antiga”, sempre ficará claro no contexto se estamos lidando
com uma definição ou outra. Essa divergência de definições ocorre entre pesquisadores da área (Vazirani (antiga), Ausiello (nova)). No
tópico das reduções que preservam aproximação entre problemas de otimização, a definição nova é mais útil. De qualquer modo, elas são
intercambiáveis e é importante conhecer e saber lidar com ambas.



Algoritmo Aproximativo (Def. padrão versus alternativa)

DEFINIÇÃO: Dada uma instancia I e uma solução S ∈ Sol(I), seja

R(I,S) = max
{

opt(I)
vaℓ(S) ,

vaℓ(S)
opt(I)

}
≥ 1 ( performance ratio )

(razão de aproximação)

Um algoritmo A para um problema de otimização é α≥1-aproximativo

se produz uma solução A(I) tal que R(I,A(I)) ≤ α para toda instância I.

Ou seja, um algoritmo tem fator de aproximação α se sempre
produz uma solução com razão de aproximação ≤ α (nessa definição alternativa).

▶ Problemas de minimização ⇒ Definições coincidem (mesmo fator de aproximação)

▶ Problemas de maximização ⇒ Definições divergem (fatores de aproximação inversos)

▶ Alg. 0.5-aprox MaxSAT-Johnson ⇒ 2 - aprox (definição alternativa)

▶ Alg. 0.75-aprox MaxSAT-GW ⇒ (1.333)-aprox (definição alternativa)

▶ Alg. 0.878-aprox MaxCut-GW ⇒ (1.138)-aprox (definição alternativa)

▶ Alg. 0.931-aprox Max2SAT-FG ⇒ (1.074)-aprox (definição alternativa)



Conclusão (até agora), assumindo P ̸= NP

▶ Mochila: FPTAS O(n3/ε).

▶ Escalonamento - num m fixo máquinas: FPTAS O((n/ε)m+1).

▶ Escalon - num qquer máquinas: PTAS O(n2 log1+ε(1/ε) · log2 1
ε ).

▶ Bin Packing: PTAS assintótico. 1.7-aprox. (1.5− ε)-inaprox.

▶ TSP-Euclidiano: PTAS.

▶ TSP-Metrico: 1.5-aproximativo.

▶ TSP: α(n)-inaprox. para qualquer função poli α(n).

▶ Set Cover: (ln n+1)-aprox., mas (ln n− ε)-inaprox. (Moshkovitz’15)

▶ MaxClique e MinColor: n-aproximáveis, mas n1−ε-inaproximáveis
em tempo polinomial (Zuckerman’06)

Aqui relembramos que, na notação anterior, a frase acima quer dizer que MaxClique é (1/n)-aproximável, mas

nε−1-inaproximável em tempo polinomial para qualquer ε > 0 (Zuckerman’06)



Classes de Aproximabilidade
NPO: Problemas de otimização tais que toda solução tem um tamanho
limitado por um polinômio no tamanho da instância e nos quais
podemos, em tempo polinomial, reconhecer instâncias e soluções de
instâncias, bem como calcular valores de soluções.

PO: Problemas NPO com algoritmo exato polinomial.

APX: Problemas NPO com algoritmo poli α-aprox. para α constante.

poly-APX: Problemas NPO com algoritmo de tempo poli α(n)-aprox.
para função polinomial α(n) = O(nk), onde k = const e n = ⟨I⟩.

log-APX: idem, mas função logaŕıtmica α(n) = O(log n).

PTAS: Problemas NPO que tem PTAS (esquema de aproximação em
tempo polinomial): algoritmo Aε polinomial em ⟨I⟩ que retorna solução
satisf. vaℓ(A(I)) = (1± ε)opt(I), p/ cada racional ε > 0 e instância I.

FPTAS: Problemas NPO que tem FPTAS (esquema de aproximação em
tempo completamente polinomial): PTAS polinomial também em 1/ε.

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO



Classes de Aproximabilidade
NPO: Problemas de otimização tais que toda solução tem um tamanho
limitado por um polinômio no tamanho da instância e nos quais
podemos, em tempo polinomial, reconhecer instâncias e soluções de
instâncias, bem como calcular valores de soluções.

PO: Problemas NPO com algoritmo exato polinomial.

APX: Problemas NPO com algoritmo poli α-aprox. para α constante.

poly-APX: Problemas NPO com algoritmo de tempo poli α(n)-aprox.
para função polinomial α(n) = O(nk), onde k = const e n = ⟨I⟩.

log-APX: idem, mas função logaŕıtmica α(n) = O(log n).

PTAS: Problemas NPO que tem PTAS (esquema de aproximação em
tempo polinomial): algoritmo Aε polinomial em ⟨I⟩ que retorna solução
satisf. R(I,Aε(I)) ≤ 1 + ε, p/ cada racional ε > 0 e instância I.

FPTAS: Problemas NPO que tem FPTAS (esquema de aproximação em
tempo completamente polinomial): PTAS polinomial também em 1/ε.

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO



Classes de Aproximabilidade - Exemplos

NPO: Caixeiro Viajante (TSP)

PO: Menor Caminho, Árvore Geradora Mı́nima (MST).

APX: Bin Packing, Vertex Cover, Caixeiro Viajante Métrico (TSPM).

poly-APX: MaxClique, MinColor, pois têm alg. n-aprox.

log-APX: Set Cover, pois tem alg. (ln n + 1)-aprox.

PTAS: Escalonamento Mı́nimo, Caixeiro Viajante Euclidiano (TSPE).

FPTAS: Problema da Mochila.

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO



Classes de Aproximabilidade - Relações, se P ̸= NP

NPO: TSP ̸∈ poly-APX (já visto)

PO: Menor Caminho, Árvore Geradora Mı́nima (MST).

APX: Bin Packing ̸∈ PTAS, pois é (1.5− ε)-inaproximável.

poly-APX: MaxClique, MinColor ̸∈ log-APX, pois são n1−ε-inaprox.
(Zuckerman’06)

log-APX: Set Cover ̸∈ APX, pois é (1-ε) ln n-inaprox. (Moshkovitz’15)

PTAS: Escalonamento Mı́nimo ̸∈ FPTAS.

FPTAS: Problema da Mochila ̸∈ PO, pois é NP-Dif́ıcil.

PO ⊊ FPTAS ⊊ PTAS ⊊ APX ⊊ log-APX ⊊ poly-APX ⊊ NPO



Redução entre Problemas NPO P1 e P2

Redução P1 ≤R P2: par (f , g)

▶ f e g : funções computáveis tempo polin, no tam de suas instâncias

▶ Instância I de P1 ⇒ f (I) é uma instância de P2

▶ g(I,S) é solução de I em P1 ⇐ Solução S de f (I) em P2



Redução entre Problemas NPO P1 e P2

• f e g : funções computáveis tempo polin. no tam de suas instâncias

• Instância I de P1 ⇒ f (I) é uma instância de P2

• g(I,S) é solução de I em P1 ⇐ Solução S de f (I) em P2

• tal que, para toda instância I de P1 e toda solução S de f (I) em P2

P1 ≤strict P2: Redução strict (f , g)

▶ RP2(f (I),S) ≤ r ⇒ RP1(I, g(I,S)) ≤ r

P1 ≤C P2: Redução cont́ınua (f , g , α≥1)

▶ RP2(f (I),S) ≤ r ⇒ RP1(I, g(I,S)) ≤ α · r

P1 ≤E P2: Redução E (relativa ao“erro”) (f , g , α≥1)

▶ RP2(f (I),S) ≤ r ⇒ RP1(I, g(I,S)) ≤ 1 + α · (r − 1)

▶ P1 ≤strict P2 ⇒ P1 ≤E P2 ⇒ P1 ≤C P2



PROVA: P1 ≤C P2 e P2 ∈ APX ⇒ P1 ∈ APX



PROVA: P1 ≤C P2 e P2 ∈ APX ⇒ P1 ∈ APX



PROVA: P1 ≤E P2 e P2 ∈ PTAS ⇒ P1 ∈ PTAS



PROVA: P1 ≤E P2 e P2 ∈ FPTAS ⇒ P1 ∈ FPTAS



Redução entre Problemas NPO P1 e P2

▶ P1 ≤C P2 e P2 ∈ APX ⇒ P1 ∈ APX

• P1 ≤C P2 e P1 ̸∈ APX ⇒ P2 ̸∈ APX

▶ P1 ≤E P2 e P2 ∈ PTAS ⇒ P1 ∈ PTAS

• P1 ≤E P2 e P1 ̸∈ PTAS ⇒ P2 ̸∈ PTAS

▶ P1 ≤E P2 e P2 ∈ FPTAS ⇒ P1 ∈ FPTAS

• P1 ≤E P2 e P1 ̸∈ FPTAS ⇒ P2 ̸∈ FPTAS

▶ P1 ≤C P2 e P2 ≤C P3 ⇒ P1 ≤C P3

▶ P1 ≤E P2 e P2 ≤E P3 ⇒ P1 ≤E P3



PROVA: P1 ≤C P2 e P2 ≤C P3 ⇒ P1 ≤C P3



PROVA: P1 ≤C P2 e P2 ∈ APX ⇒ P1 ∈ APX



PROVA: P1 ≤co P2 e P2 ∈ APX ⇒ P1 ∈ APX



Redução entre Problemas NPO P1 e P2

Redução (f , g): para todo r ≥ 1 racional

• fr e gr : funções computáveis tempo polin. no tam de suas instâncias

• Instância I de P1 ⇒ fr (I) é uma instância de P2

• gr (I,S) é solução de I em P1 ⇐ Solução S de fr (I) em P2

• tal que, para toda instância I de P1 e toda solução S de fr (I) em P2

P1 ≤co P2: Redução Co (cont́ınua forte) (f , g , α≥1)

▶ RP2(fr (I),S) ≤ r ⇒ RP1(I, gr (I,S)) ≤ α · r

P1 ≤ap P2: Redução AP (f , g , α≥1)

▶ RP2(fr (I),S) ≤ r ⇒ RP1(I, gr (I,S)) ≤ 1 + α · (r − 1)

P1 ≤strict P2 ⇒ P1 ≤E P2 ⇒ P1 ≤C P2w� w�
P1 ≤ap P2 ⇒ P1 ≤co P2



Redução entre Problemas NPO P1 e P2

▶ P1 ≤co P2 e P2 ∈ APX ⇒ P1 ∈ APX

▶ P1 ≤co P2 e P2 ∈ poly-APX ⇒ P1 ∈ poly-APX

▶ P1 ≤co P2 e P2 ∈ log-APX ⇒ P1 ∈ log-APX

▶ P1 ≤ap P2 e P2 ∈ PTAS ⇒ P1 ∈ PTAS

▶ P1 ≤co P2 e P2 ≤co P3 ⇒ P1 ≤co P3

▶ P1 ≤ap P2 e P2 ≤ap P3 ⇒ P1 ≤ap P3

▶ P1 ≤strict P2 ⇒ P1 ≤E P2 ⇒ P1 ≤C P2w� w�
P1 ≤ap P2 ⇒ P1 ≤co P2w�
P1 ≤ptas P2



NPO-completude e APX-completude

NPO-dif́ıcil e APX-dif́ıcil
▶ Problema P2 é NPO-dif́ıcil se P1 ≤co P2, ∀P1 ∈ NPO

▶ Problema P2 é poly-APX-dif́ıcil se P1 ≤co P2, ∀P1 ∈ poly-APX

▶ Problema P2 é log-APX-dif́ıcil se P1 ≤co P2, ∀P1 ∈ log-APX

▶ Problema P2 é APX-dif́ıcil se P1 ≤ap P2, ∀P1 ∈ APX

▶ Problema P2 é APX-completo se é APX e APX-dif́ıcil

▶ Problema P2 é NPO-completo se é NPO e NPO-dif́ıcil

Conclusões (se P ̸= NP)

▶ P2 é NPO-dif́ıcil ⇒ P2 ̸∈ poly-APX

▶ P2 é poly-APX-dif́ıcil ⇒ P2 ̸∈ log-APX

▶ P2 é log-APX-dif́ıcil ⇒ P2 ̸∈ APX

▶ P2 é APX-dif́ıcil ⇒ P2 ̸∈ PTAS



NPO-completude e APX-completude

▶ Problema P2 é NPO-dif́ıcil se P1 ≤co P2, ∀P1 ∈ NPO

▶ Problema P2 é poly-APX-dif́ıcil se P1 ≤co P2, ∀P1 ∈ poly-APX

▶ Problema P2 é log-APX-dif́ıcil se P1 ≤co P2, ∀P1 ∈ log-APX

▶ Problema P2 é APX-dif́ıcil se P1 ≤ap P2, ∀P1 ∈ APX

Conclusões
▶ P1 ≤co P2 e P1 ∈ NPO-dif́ıcil ⇒ P2 ∈ NPO-dif́ıcil

▶ P1 ≤co P2 e P1 ∈ poly-APX-dif́ıcil ⇒ P2 ∈ poly-APX-dif́ıcil

▶ P1 ≤co P2 e P1 ∈ log-APX-dif́ıcil ⇒ P2 ∈ log-APX-dif́ıcil

▶ P1 ≤ap P2 e P1 ∈ APX-dif́ıcil ⇒ P2 ∈ APX-dif́ıcil

▶ MaxSAT, BinPacking, MaxCut, MinCV, TSPM são APX-completos
[Papadimitriou, Yannakakis’91]

▶ TSP é NPO-completo [Orponen, Mannila’87]

▶ Clique é poly-APX-completo [Bazgan et al.’05]

▶ Set Cover é log-APX-completo [Escoffier, Paschos’06]



Classes de Aproximabilidade - Relações, se P ̸= NP

NPO: TSP ̸∈ poly-APX (já visto)

PO: Menor Caminho, Árvore Geradora Mı́nima (MST).

APX: Bin Packing ̸∈ PTAS, pois é (1.5− ε)-inaproximável.

poly-APX: MaxClique, MinColor ̸∈ log-APX, pois são n1−ε-inaprox.
(Zuckerman’06)

log-APX: Set Cover ̸∈ APX, pois é (1-ε) ln n-inaprox. (Moshkovitz’15)

PTAS: Escalonamento Mı́nimo ̸∈ FPTAS.

FPTAS: Problema da Mochila ̸∈ PO, pois é NP-Dif́ıcil.

PO ⊊ FPTAS ⊊ PTAS ⊊ APX ⊊ log-APX ⊊ poly-APX ⊊ NPO



Exemplo de Redução: Subset-Sum ≤strict Mochila



Exemplo de Redução: Clique ≤strict Independent Set

▶ Clique ≤ap Independent Set

▶ Independent Set ≤ap Clique



Exemplo de Redução: Set Packing ≤strict Independent Set



Exemplo de Redução: Independent Set ≤strict Set Packing



Exemplo de Redução: Domination ≤strict Set Cover



Exemplo de Redução: Set Cover ≤strict Domination



Exemplo de Redução: Set Cover ≤strict Hitting Set



Exemplo de Redução: Hitting Set ≤strict Set Cover


