Algoritmos Aproximativos Lista de exercícios 2

- **1.** Prove que SET-COVER \leq_{AP} DOMINANTE e que DOMINANTE \leq_{AP} SET-COVER. Obs: \leq_{AP} é a approximation preserving reduction.
- **2.** Prove formalmente que, se $A \leq_{AP} B$ e $B \in PTAS$, então $A \in PTAS$.
- 3. Prove que o P_3 -hull number de um grafo é APX-Difícil. O P_3 -hull number de um grafo é o menor número de vértices inicialmente infectados capazes de infectar o grafo inteiro de acordo com a infecção P_3 (um vértice sadio é infectado por pelo menos dois vizinhos doentes).
- 4. Prove que o P_3 -interval number de um grafo é $O(\log n)$ -inaproximável se $P \neq NP$. O P_3 -interval number de um grafo é o menor número de vértices inicialmente infectados capazes de infectar o grafo inteiro **em um único passo de tempo** de acordo com a infecção P_3 (um vértice sadio é infectado no tempo k se tem pelo menos dois vizinhos doentes infectados em tempos menores que k).
- 5. Entre as apresentações dos alunos de Algoritmos Aproximativos, escolha uma diferente da sua, explique o problema estudado e apresente o algoritmo aproximativo obtido.
- **6.** Entre as apresentações dos alunos de Algoritmos Aproximativos, escolha uma diferente da sua **e diferente da questão anterior**, explique o problema estudado e apresente o algoritmo aproximativo obtido.
- 7. Prove que, se $A \leq_{AP} B$ e $B \leq_{AP} C$, então $A \leq_{AP} C$.