Universidade Federal do Ceará Centro de Ciências Departamento de Computação

Matemática Discreta Lista de exercícios 4

Cada $\sqrt{}$ denota um nível de dificuldade: $\sqrt{}$ fácil, $\sqrt{}$ médio e $\sqrt{}$ $\sqrt{}$ difícil.

 $\sqrt{\sqrt{\sqrt{1}}}$ Considere a seguinte versão do Princípio da Indução Matemática:

Seja $A \subseteq \mathbb{N}$ tal que

- 1. $k \in A$, e
- 2. se $n \ge k$ e $\{0, 1, 2, ..., n\} \subseteq A$, então $n + 1 \in A$.

Então, $A = \mathbb{N}$.

Usando essa versão, mostre que se $n \in \mathbb{N} - \{0\}$ é uma potência de 2 $(n = 2^k$, para algum $k \in \mathbb{N}$), e uma função $T : \mathbb{N} \to \mathbb{R}$ é tal que

$$\begin{array}{rcl} T(1) & = & 0 \\ T(n) & = & T(n/2) + 1, & n > 1, \end{array}$$

então $T(n) = \log n$ (logaritmo na base 2), para todo n potência de 2.

 $\sqrt{\sqrt{2}}$. Para cada conjunto abaixo, dê um argumento para mostrar se o conjunto é finito ou infinito.

- 1. $A = \{n^7 : n \in \mathbb{N}\}.$
- 2. $B = \{n^{109} : n \in \mathbb{N}\}.$
- 3. $A \cup B$.
- 4. $A \cap B$.
- $\sqrt{\sqrt{3}}$. Sejam $n \in \mathbb{N}$ e $A \subseteq \{0, 1, \dots, 2n-1\}$. Mostre que se |A| = n+2, então existem $a \in A$ e $a' \in A$, $a \neq a'$, tais que a + a' = 2n.
- $\sqrt{\sqrt{\sqrt{4}}}$ Sejam $n \in \mathbb{N}$, n > 1, e $A \subseteq \mathbb{N}$. Prove cada uma das afirmações a seguir.
 - 1. se |A| = n + 1, então existem $a \in A$ e $a' \in A$, $a \neq a'$, tais que a a' é divisível por n.
 - 2. se |A| = n + 2, então existem $a \in A$ e $a' \in A$, $a \neq a'$, tais que (a a' é divisível por 2n) ou (a + a' é divisível por 2n).

Observe que a - a' é divisível por n se e somente se $a \mod n = a' \mod n$, e que a + a' é divisível por n se e somente se $(a \mod n) + (a' \mod n) = n$.

 $\sqrt{5}$. Para todo conjunto A e $R \subseteq A \times A$ uma relação simétrica, considere a notação aa' para o par $n\~ao$ -ordenado formado pelos elementos $a \in A$ e $a' \in A$. Escrevemos $aa' \in R$ para indicar que $(a,a') \in R \wedge (a',a) \in R$. Um grafo, denotado por G = (V,E), onde V é um conjunto e seus

elementos são denominados $v\'{e}rtices$, e $E\subseteq V\times V$ é uma relação simétrica cujos elementos são pares não-ordenados chamados de arestas. O grafo G é conexo se, para todo par u e v de vértices, existe uma sequência $\langle u=v_1,v_2,\ldots,v_\ell=v\rangle$ de vértices de G tal que $v_iv_{i+1}\in E$, para todo $i\in\{1,2,\ldots,\ell-1\}$. Mostre, por indução em |V|, que se G=(V,E) é um grafo conexo, então $|V|\leq |E|+1$.

 $\sqrt{~\bf 6.}~$ Mostre que o conjunto de números fracionários é infinito enumerável.

 $\sqrt{\sqrt{7}}$. Mostre que, em todo grupo de $n \ge 2$ pessoas, há duas pessoas com o mesmo número de amigos no grupo. Considere que a relação "ser amigo" é simétrica mas não é reflexiva.