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2-Neighbour Bootstrap Percolation

Infection on Graphs

I Initial infected set S = S0 ⊆ V (G )

I Spreading Rule:
Si+1 = Si ∪ {all vert. having 2 infected neighbours}

Some Definitions/Notations

I S is a percolating set of G ⇔ ∃k Sk = V (G )

I Let tS(G ) be the smallest value k to which Sk = V (G )

I Let t(G ) = max
s

tS(G )
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Example of Infection
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v4 v5 v6

v7 v8

Figure 1: Spreading of the set S = {v2, v6, v7}.
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The Percolation Time Problem

t(G ) ≥ k ?
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Example

t(G ) ≥ 4 ?

v1

v2v3

v4 v5 v6

v7 v8

Figure 2: The Graph G .
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Previous Results [Benevides et al., 2013]

NP-complete Results

I General graphs

I Bipartite graphs

I Planar graphs

Polynomial Results

I Trees (Linear Time)

I Chordal graphs

Results for fixed K

I t(G ) ≥ 2 is polynomial

I t(G ) ≥ 4 is NP-Complete

I t(G ) ≥ 7 is NP-Complete for G bipartite
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t(G ) ≥ 5 is NP-Complete (for G bipartite)

Reduction from the problem 3SAT:

I For each clause Ci , add the gadget in the Figure 3

I For each pair of literals li,a and lj,b, add a vertex y(i,a),(j,b)
and link this vertex to the vertices wi,a and wj,b

I Add a vertex z and link it to all vertices y(i,a),(j,b) and add a
vertex adjacent only to z .
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t(G ) ≥ 5 Reduction from 3SAT
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Figure 3: Bipartite gadget for each clause Ci
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Figure 4: Graph resulting from the reduction from an instance of 3SAT
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t(G ) ≥ 3 is Polynomial (for G bipartite)

Some Definitions

I T0 = {v ∈ V (G )|v has degree 1}
I Ni(u) = {v ∈ V (G )|dist. between u and v is i}
I N≥i(u) = {v ∈ V (G )|dist. between u and v is ≥ i}

Theorem
t(G ) ≥ 3 iff there are vertices u ∈ V (G ), v ∈ N(u), s ∈ N2(u) s.t.
{v , s} ∪ N≥3(u) ∪ T0 percolates u at time 3.

Corollary
There is an algorithm that solves in bipartite graphs the
Percolation Time Problem for a fixed k = 3 in time mn3.
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Figure 5: Graph G
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Figure 5: Vertices’ infection time when G is infected by the percolating
set S = {v7, v11, v14, v15}
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Let S := {v , s} ∪ N≥3(u) ∪ T0

Update vertices’ infection time

While S does not infect all vertices

Choose any x ∈ N2(u) not infected

and let S := S ∪ {x}
Update vertices’ infection time

Figure 6: Building a percolating set S from {v , s} ∪ N≥3(u) ∪ T0.
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Let S := {v , s} ∪ N≥3(u) ∪ T0

Update vertices’ infection time

While S does not infect all vertices

Choose any x ∈ N2(u) not infected

and let S := S ∪ {x}
Update vertices’ infection time

Figure 6: Percolating set S = {v , s, v11, v8, v7} ∪ N≥3(u) ∪ T0
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t(G ) ≥ 3 is Polynomial (for any graph G )

Theorem
t(G ) ≥ 3 iff there are u ∈ V (G ),T0 ∈ T u

0 , k ≤ 4 and a set

F ⊆
(
V (G)
k

)
s.t. T0 ∪ N≥3(u) ∪ F percolates u at time 3 then .

Corollary
There is an algorithm that solves the Percolation Time Problem
for a fixed k = 3 in time mn5.
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t(G ) ≥ 4 is Polynomial (for G bipartite)

Theorem
t(G ) ≥ 4 iff there are u ∈ V (G ),T0 ∈ T u

0 , k ≤ 10,F ⊆
(
V (G)
k

)
s.t.

T0 ∪ F percolates some vertex at time 4.

Corollary
There is an algorithm that solves in bipartite graphs the
Percolation Time Problem for a fixed k = 4 in time mn13.
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