The Maximum Time of 2-Neighbour Bootstrap Percolation

Thiago Marcilon Universidade Federal do Ceará (UFC) Fortaleza, Brazil

This is a joint work with Samuel Nascimento (UFC, Fortaleza, Brazil) Rudini Sampaio (UFC, Fortaleza, Brazil)

WG-2014, France, June 25-27

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Percolation Time Problem

Our Results

Conclusion

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・日本・日本・日本・日本・日本

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Infection on Graphs

- ▶ Initial infected set $S = S_0 \subseteq V(G)$
- Spreading Rule: S_{i+1} = S_i ∪ {all vert. having 2 infected neighbours}

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Infection on Graphs

- Initial infected set $S = S_0 \subseteq V(G)$
- Spreading Rule: S_{i+1} = S_i ∪ {all vert. having 2 infected neighbours}

Some Definitions/Notations

- S is a percolating set of $G \Leftrightarrow \exists k \ S_k = V(G)$
- Let $t_S(G)$ be the smallest value k to which $S_k = V(G)$

• Let
$$t(G) = \max_{s} t_{S}(G)$$

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Figure 1: Spreading of the set $S = \{v_2, v_6, v_7\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 1: Spreading of the set $S = \{v_2, v_6, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 1: Spreading of the set $S = \{v_2, v_6, v_7\}$.

Figure 1: Spreading of the set $S = \{v_2, v_6, v_7\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

The Percolation Time Problem

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

$t(G) \ge k$?

 v_1 V3 *v*₂ V_5 V_6 v_4 V_7 v_8

 $t(G) \ge 4$?

Figure 2: The Graph G.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

 v_1 0 V3 V_2 V_5 V_6 V۵ v_8 V_7 Λ

 $t(G) \ge 4$?

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・西ト・ヨト・ヨー うへの

 v_1 0 V3 V_2 1 V_5 V_6 V۵ v_8 V_7 Λ

 $t(G) \ge 4$?

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・西ト・ヨト・ヨー うへの

 v_1 0 V3 V_2 1 2 *v*₄ V_5 V₆ 2 v_8 V_7 0

 $t(G) \ge 4$?

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

 v_1 3 0 V3 V_2 1 2 *v*₄ V_5 V₆ 2 v_8 V_7 3 0

 $t(G) \ge 4$?

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・西ト・ヨト・ヨー うへの

 v_1 4 3 0 V3 V_2 1 2 *v*₄ V_5 V₆ 2 v_8 V_7 3 0

 $t(G) \ge 4$?

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Figure 2: Spreading of the set $S = \{v_2, v_7\}$.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・西ト・ヨト・ヨー うへの

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

NP-complete Results

- General graphs
- Bipartite graphs
- Planar graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

NP-complete Results

- General graphs
- Bipartite graphs
- Planar graphs

Polynomial Results

- Trees (Linear Time)
- Chordal graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

NP-complete Results

- General graphs
- Bipartite graphs
- Planar graphs

Polynomial Results

- Trees (Linear Time)
- Chordal graphs

Results for fixed K

- $t(G) \ge 2$ is polynomial
- $t(G) \ge 4$ is NP-Complete
- $t(G) \ge 7$ is NP-Complete for G bipartite

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Results for Bipartite Graphs

Results for General Graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・日本・モート モー うくぐ

Results for Bipartite Graphs

• $t(G) \ge 3$ is polynomial (mn^3)

Results for General Graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・日本・日本・日本・日本

Results for Bipartite Graphs

- $t(G) \ge 3$ is polynomial (mn^3)
- $t(G) \ge 4$ is polynomial (mn^{13})

Results for General Graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Results for Bipartite Graphs

- $t(G) \ge 3$ is polynomial (mn^3)
- $t(G) \ge 4$ is polynomial (mn^{13})
- $t(G) \ge 5$ is NP-Complete

Results for General Graphs

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・西ト・モート ヨー うへの

Results for Bipartite Graphs

- $t(G) \ge 3$ is polynomial (mn^3)
- $t(G) \ge 4$ is polynomial (mn^{13})
- $t(G) \ge 5$ is NP-Complete

Results for General Graphs

• $t(G) \ge 3$ is polynomial (mn^5)

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト・4日・4日・4日・日・900

$t(G) \ge 5$ is NP-Complete (for G bipartite)

Reduction from the problem **3SAT**:

- For each clause C_i , add the gadget in the Figure 3
- ► For each pair of literals *l_{i,a}* and *l_{j,b}*, add a vertex *y_{(i,a),(j,b)}* and link this vertex to the vertices *w_{i,a}* and *w_{j,b}*
- ► Add a vertex z and link it to all vertices y_{(i,a),(j,b)} and add a vertex adjacent only to z.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Figure 3: Bipartite gadget for each clause C_i

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

うしん 同一人用 人用 人名 マート

3SAT Instance: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$

Figure 4: Graph resulting from the reduction from an instance of **3SAT**

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

3SAT Instance: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$

Figure 4: Graph resulting from the reduction from an instance of **3SAT**

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

3SAT Instance: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$

Figure 4: Graph resulting from the reduction from an instance of **3SAT**

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Some Definitions

- $\mathbf{T}_{\mathbf{0}} = \{ v \in V(G) | v \text{ has degree } 1 \}$
- ▶ $N_i(u) = \{v \in V(G) | \text{dist. between } u \text{ and } v \text{ is } i\}$
- ▶ $\mathbf{N}_{\geq i}(\mathbf{u}) = \{ v \in V(G) | \text{dist. between } u \text{ and } v \text{ is } \geq i \}$

Theorem

 $t(G) \ge 3$ iff there are vertices $u \in V(G)$, $v \in N(u)$, $s \in N_2(u)$ s.t. $\{v, s\} \cup N_{\ge 3}(u) \cup T_0$ percolates u at time 3.

Corollary

There is an algorithm that solves in bipartite graphs the Percolation Time Problem for a fixed k = 3 in time mn^3 .

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

・ロト 4 個 ト 4 目 ト 4 目 ト 9 Q Q

Figure 5: Graph G

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 5: Vertices' infection time when G is infected by the percolating set $S = \{v_7, v_{11}, v_{14}, v_{15}\}$

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 5: Vertices' infection time when G is infected by the percolating set $S' = \{v_7, v_{11}, v_{14}, v_{15}, v_6\}$

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 5: Vertices' infection time when G is infected by the percolating set $S'' = \{v_7, v_{11}, v_{14}, v_{15}, v_6, v_{13}\}$

Figure 5: Vertex u is infected at time 3 by the set $\{v_6, v_{11}, v_{13}, v_{14}, v_{15}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Figure 5: Vertex u is infected at time 3 by the set $\{v_6, v_{11}, v_{13}, v_{14}, v_{15}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While *S* does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While *S* does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While *S* does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Let $S := \{v, s\} \cup N_{\geq 3}(u) \cup T_0$ Update vertices' infection time While S does not infect all vertices Choose any $x \in N_2(u)$ not infected and let $S := S \cup \{x\}$ Update vertices' infection time

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Figure 6: Percolating set $S = \{v, s, v_{11}, v_8, v_7\} \cup N_{\geq 3}(u) \cup T_0$

$t(G) \ge 3$ is Polynomial (for any graph G)

Theorem

 $t(G) \ge 3$ iff there are $u \in V(G)$, $T_0 \in \mathcal{T}_0^u$, $k \le 4$ and a set $F \subseteq \binom{V(G)}{k}$ s.t. $T_0 \cup N_{\ge 3}(u) \cup F$ percolates u at time 3 then .

Corollary

There is an algorithm that solves the Percolation Time Problem for a fixed k = 3 in time mn^5 .

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Theorem

 $t(G) \ge 4$ iff there are $u \in V(G)$, $T_0 \in \mathcal{T}_0^u$, $k \le 10$, $F \subseteq \binom{V(G)}{k}$ s.t. $T_0 \cup F$ percolates some vertex at time 4.

Corollary

There is an algorithm that solves in bipartite graphs the Percolation Time Problem for a fixed k = 4 in time mn¹³.

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

イロト (四) (日) (日) (日) (日) (日)

Conclusion

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Conclusion

Main Contributions

- We closed the gap between polynomial time and NP-Complete problems
- We obtained structural characterizations for the graphs in the polynomial problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results

Conclusion

Main Contributions

- We closed the gap between polynomial time and NP-Complete problems
- We obtained structural characterizations for the graphs in the polynomial problems

イロト (四) (日) (日) (日) (日) (日)

Future Work

Percolation Time Problem in:

- Restricted degree graphs
- Subgraph and induced subgraph of grids

The Maximum Time of 2-Neighbour Bootstrap Percolation

2-Neighbour Bootstrap Percolation

Percolation Time Problem

Our Results