Property Testing and Parameter Testing for Permutations

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil) Carlos Gustavo Moreira (IMPA, Rio de Janeiro, Brazil)

SODA 2010 (Austin-Texas, USA)

January 17, 2010 (9:25 - 9:45 AM) Session 1B

イロメ イ母メ イヨメ イヨメー

 Ω

Basic definitions

A permutation σ on $[n] = \{1, 2, \ldots, n\}$ is a bijective function of the set $[n]$ into itself.

 $(4, 5, 2, 3, 6, 1)$ is a permutation on [6].

Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence of permutations.

 Ω

A natural property

The permutation τ on $[m]$ is a subpermutation of σ on $[n]$ if there is a subsequence of σ with same relative order of τ .

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

A natural property

The permutation τ on $[m]$ is a subpermutation of σ on $[n]$ if there is a subsequence of σ with same relative order of τ .

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau,\sigma)$ be the number of occurrences of τ in σ . The density of the permutation τ as a subpermutation of σ is given by

$$
t(\tau,\sigma)=\binom{n}{m}^{-1}\Lambda(\tau,\sigma).
$$

イロン イ団ン イミン イミン 一番 へのへ

Convergent permutation sequences

If τ is a fixed permutation and $(\sigma_n)_{n\in\mathbb{N}}$ is a convergent sequence, it would be natural to require that the real sequence $(t(\tau, \sigma_n))_{n \in \mathbb{N}}$ converges.

Definition

A sequence of permutations (σ_n) is said to converge (weakly) if, for every fixed permutation τ , the real sequence $(t(\tau, \sigma_n))_{n\in\mathbb{N}}$ converges.

Convergent permutation sequences

Example: Let σ_n be the identity permutation = $(1, 2, \ldots, n)$ on $[n]$.

$$
t(\tau, \sigma_n) = \begin{cases} 1, & \text{if } \tau \text{ is an identity permutation of size } m \le n; \\ 0, & \text{otherwise.} \end{cases}
$$

Example: Let π_n be a random permutation on $[n]$ (chosen uniformly).

$$
\mathbb{E}(t(\tau,\pi_n))=\begin{cases}1/m!, & \text{if }|\tau|=m\leq n;\\0, & \text{if }m>n.\end{cases}
$$

 Ω

へのへ

A limit for a permutation sequence?

Question: Is there a limit for a convergent permutation sequence?

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of $[n]$, and where $(a, b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

$$
\sigma=(2,7,4,5,1,3,6)
$$

イロメ イ部メ イヨメ イヨメー Ω

Weighted permutations

$$
\sigma=(2,7,4,5,1,3,6)
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 $2Q$

Weighted permutations

$$
\sigma=(2,7,4,5,1,3,6)
$$

イロト イ押 トイモト イモト

重

 $2Q$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

イロト イ押 トイモト イモト

重

 $2Q$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

$$
Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}
$$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

$$
Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}
$$
 The lines sum
"Weighted permutation"

The lines sum
$$
\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \le \begin{bmatrix} 9/4 \\ 23/18 \\ 1/6 \end{bmatrix} < \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯ 290

 Ω

Limit permutations

Definition

A limit permutation is a Lebesgue measurable function Z : $[0, 1]^2 \rightarrow [0, 1]$ satisfying:

(a) $Z(x, \cdot)$ is a cdf (cum.distr.funct.) continuous at 0 and 1 ($\forall x \in [0, 1]$);

(b) $Z(\cdot, y)$ is a measurable function ($\forall y \in [0, 1]$) s.t.

$$
\int_0^1 Z(x,y) \ dx = y.
$$

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

 Ω

Density of subpermutations $\tau_{[m]}$ in $\sigma_{[n]}$

$$
t(\tau,\sigma)=\left(\begin{matrix}n\\m\end{matrix}\right)^{-1}\sum_{x\in[n]^m}\sum_{y\in[n]^m}\prod_{i=1}^m\left(\sigma(x_i) = y_i\right),
$$

 $[n]_{\sim}^{m}$: $x = (x_1 < x_2 < \ldots < x_m)$ is increasing.
 $[n]_{\tau}^{m}$: $y = (y_1, \ldots, y_m)$ has the same relative order of $\tau : y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

 Ω

Density of subpermutations $\tau_{[m]}$ in $\sigma_{[n]}$

$$
t(\tau,\sigma)=\left(\begin{matrix}n\\m\end{matrix}\right)^{-1}\sum_{x\in[n]^m}\sum_{y\in[n]^m}\prod_{i=1}^m\left(\sigma(x_i) = y_i\right),
$$

 $[n]_{\sim}^{m}$: $x = (x_1 < x_2 < \ldots < x_m)$ is increasing.
 $[n]_{\tau}^{m}$: $y = (y_1, \ldots, y_m)$ has the same relative order of $\tau : y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

$$
t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]^m} \sum_{y \in [n]^m} \prod_{j=1}^m \left(Q_{\sigma}(x_j, y_j + 1) - Q_{\sigma}(x_j, y_j) \right)
$$

Density of subpermutations $\tau_{[m]}$ in $\sigma_{[n]}$

$$
t(\tau,\sigma)=\left(\begin{matrix}n\\m\end{matrix}\right)^{-1}\sum_{x\in[n]^m}\sum_{y\in[n]^m}\prod_{i=1}^m\left(\sigma(x_i) = y_i\right),
$$

 $[n]_{\sim}^{m}$: $x = (x_1 < x_2 < \ldots < x_m)$ is increasing.
 $[n]_{\tau}^{m}$: $y = (y_1, \ldots, y_m)$ has the same relative order of $\tau : y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

$$
t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]^m} \sum_{y \in [n]^m} \prod_{i=1}^m \left(Q_{\sigma}(x_i, y_i + 1) - Q_{\sigma}(x_i, y_i) \right)
$$

$$
t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]^m} \sum_{y \in [n]^m} \prod_{i=1}^m \left(Z_{\sigma} \left(\frac{x_i}{n}, \frac{y_i+1}{n} \right) - Z_{\sigma} \left(\frac{x_i}{n}, \frac{y_i}{n} \right) \right)
$$

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$ Ω

Density of subpermutations $\tau_{[m]}$ in $\sigma_{[n]}$

$$
t(\tau,\sigma)=\left(\begin{matrix}n\\m\end{matrix}\right)^{-1}\sum_{x\in[n]^m}\sum_{y\in[n]^m}\prod_{i=1}^m\left(\sigma(x_i) = y_i\right),
$$

 $[n]_{\sim}^{m}$: $x = (x_1 < x_2 < \ldots < x_m)$ is increasing.
 $[n]_{\tau}^{m}$: $y = (y_1, \ldots, y_m)$ has the same relative order of $\tau : y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

$$
t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]^m} \sum_{y \in [n]^m} \prod_{i=1}^m \left(Q_{\sigma}(x_i, y_i + 1) - Q_{\sigma}(x_i, y_i) \right)
$$

$$
t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]^m} \sum_{y \in [n]^m} \prod_{i=1}^m \left(Z_{\sigma} \left(\frac{x_i}{n}, \frac{y_i+1}{n} \right) - Z_{\sigma} \left(\frac{x_i}{n}, \frac{y_i}{n} \right) \right)
$$

$$
t(\tau,\sigma)=m!\int_{x\in[0,1]_\prec^m}\Big(\int_{y\in[0,1]_\tau^m}dZ_{\sigma}(x_1,\cdot)\cdots dZ_{\sigma}(x_m,\cdot)\Big)dx_1\cdots dx_m
$$

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$ Ω

へのへ

Density of subpermutations $\tau_{[m]}$ in Z

Definition

Given a limit permutation $Z : [0,1]^2 \to [0,1]$, the subpermutation density of τ in Z is given by

$$
t(\tau, Z) = m! \int_{[0,1]_{\tau}^{m}} \Big(\int_{[0,1]_{\tau}^{m}} dZ(x_{1}, \cdot) \cdots dZ(x_{m}, \cdot) \Big) dx_{1} \cdots dx_{m}
$$

Existence of a limit

Theorem

Given a convergent sequence $(\sigma_n)_{n\in\mathbb{N}}$ of permutations, there exists a limit permutation $Z : [0, 1]^2 \rightarrow [0, 1]$ s.t.

$$
\lim_{n\to\infty}t(\tau,\sigma_n) = t(\tau,Z)
$$

for every permutation τ .

×

イロト イ部 トイヨ トイヨト

 Ω

后

Uniqueness of the limit

Theorem If Z_1 and Z_2 are limits to a sequence (σ_n) , then they differ only in a set of measure zero.

イロト イ押 トイモト イモト

へのへ

Uniqueness of the limit

Theorem If Z_1 and Z_2 are limits to a sequence (σ_n) , then they differ only in a set of measure zero.

Theorem Every limit permutation Z is the limit of a convergent sequence of permutations.

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ X 9 Q Q

Random permutations

Given a limit permutation Z, the random permutation $\sigma(n, Z)$ is generated as follows.

- We generate a sequence $(x_1 < x_2 < \cdots < x_n)$ in $[0,1]^n_<$ uniformly
- We generate a sequence (y_1, \ldots, y_n) in $[0, 1]^n$, where y_k is generated according to the probability distribution $Z(x_k, \cdot)$
- $\sigma(n, Z)$ is given by the relative order of (y_1, \ldots, y_n)

Random permutations

メロメ メ団 メメ ミメ メミメー \equiv 299

 Ω

后

Random permutations

Theorem

If Z is a limit permutation, then, with probability 1 , the random sequence $(\sigma(n, Z))_{n \in \mathbb{N}}$ is convergent and its limit is Z.

Weak convergence \times Strong convergence

A sequence of permutations $(\sigma_n)_{n\in\mathbb{Z}}$ is said to converge (strongly) if it is a Cauchy sequence with respect to the rectangular distance.

Theorem

strong convergence \iff weak convergence

イロト イ団 トイ ミト イヨト

へのへ

Rectangular distance

Definition

Given permutations σ_1, σ_2 on $[n]$, the rectangular distance between σ_1 and σ_2 is given by

$$
d_{\square}(\sigma_1,\sigma_2) = \frac{1}{n} \max_{S,T \in I[n]} \ \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.
$$

In particular, random permutations are close to each other with high probability.

Permutation parameters

Example: $fp(\sigma)$ is the number of fixed points of σ .

$$
\sigma = (7, 1, 3, 2, 5, 6, 4) \qquad \text{fp}(\sigma) = 3
$$

Example: ord(σ) is the largest increasing subpermutation of σ .

$$
\sigma=(7,1,3,2,5,6,4) \hspace{1cm} \textit{ord}(\sigma)=4
$$

Example: $inv(\sigma)$ is the number of inversions in σ .

$$
\sigma = (7, 1, 3, 2, 5, 6, 4) \qquad \text{inv}(\sigma) = 9
$$

$$
\widehat{(7, 1, 3, 2, 5, 6, 4)}
$$

イロト イ団 トイ ミト イヨト

へのへ

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter Testing through subpermutations

Question: Can one accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of constant size?

Parameter testing through subpermutations

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter Testing through subpermutations

Question: Can one accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of constant size?

sub(k, σ): random subpermutation of σ on [k] (uniformly chosen)

 $\sigma = (5, 7, 2, 10, 1, 4, 8, 6, 3, 9)$ sub $(4, \sigma) = (2, 4, 1, 3)$

 Ω

へのへ

Parameter testing through subpermutations

Objective: accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of much smaller size.

Definition A parameter f is testable if, For every $\epsilon > 0$, There exist positive integers $k < n_0$ s.t.:

If σ is a permutation of length $n > n_0$, then

$$
\mathbb{P}\Big(|f(\sigma)-f(\mathsf{sub}(k,\sigma))|>\varepsilon\Big) \leq \varepsilon.
$$

Characterization of testable parameters

Theorem

A bounded permutation parameter is testable if and only if the sequence $(f(\sigma_n))_{n\in\mathbb{N}}$ converges for every convergent sequence $(\sigma_n)_{n\in\mathbb{N}}$ of permutations.

A permutation parameter f is bounded if there is a constant M such that $|f(\sigma)| < M$ for every permutation σ .

イロン イ母ン イミン イモンニ き

 Ω

Immediate consequences

Testable Permutation Parameters

- The subpermutation density $f_{\tau}(\sigma) = t(\tau, \sigma)$ for any fixed τ .
- The inversion density $inv(\sigma) = t((2,1), \sigma)$.

NOT Testable Permutation Parameters (through subpermutations)

- The fixed-point density.
- The density of a longest increasing subsequence.

へのへ

Property testing through subpermutations

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

 Ω

Property testing through subpermutations

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

Question: Can one predict the answer of such a question accurately by looking at a small subpermutation?

イロン イ団ン イミン イミン 一番

 Ω

Property testing through subpermutations

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

Question: Can one predict the answer of such a question accurately by looking at a small subpermutation?

Modified question: Can one at least predict accurately if a permutation σ satisfies a property $\mathcal P$ or is far from satisfying it by looking at a small subpermutation?

Property testing through subpermutations

More precisely: a permutation property P is testable if, for every $\epsilon > 0$, there exist $k \leq n_0$ s.t. if σ is a permutation on [n] with $n > n_0$, then with probability $> 1 - \epsilon$.

(i) σ satisfies P \implies sub(k, σ) satisfies P

(ii) σ is ϵ -far from satisfying $\mathcal{P} \implies \mathsf{sub}(k, \sigma)$ does not satisfy $\mathcal P$

 σ is ϵ -far from satisfying $\mathcal P$ if $d\Box(\sigma,\mathcal{P}) = \min\{d\Box(\sigma,\pi) : \pi$ on [n] satisfies $\mathcal{P}\} \geq \epsilon$.

4 0 X 4 8 X 4 3 X 4 3 X 4 5 X 4 8 4 9 4 0 4 0

イロト イ団 トイ ミト イヨト

へのへ

Hereditary properties

A permutation property P is hereditary if, whenever σ satisfies P, then all its subpermutations satisfy P .

Example: The property of avoiding a fixed pattern is hereditary.

Theorem Every hereditary property is testable.

- We developed a theory for convergence of permutation sequences, along the lines of the theory introduced for graphs by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi.
- A limit object was identified. It is essentially unique and leads to a natural model of random permutations.
- • This theory was applied to characterize a version of property testing and parameter testing in the permutation framework.

Property Testing and Parameter Testing for Permutations

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil) Carlos Gustavo Moreira (IMPA, Rio de Janeiro, Brazil)

SODA 2010 (Austin-Texas, USA)

January 17, 2010 (9:25 - 9:45 AM) Session 1B