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Basic definitions

A permutation σ on [n] = {1, 2, . . . , n} is a bijective function of
the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].
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Objective

Let (σn)n∈N be a sequence of permutations.

Question: When does (σn)n∈N converge?
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A natural property

The permutation τ on [m] is a subpermutation of σ on [n] if there
is a subsequence of σ with same relative order of τ .

Example: τ = (3, 1, 4, 2), σ = (5, 6, 2, 4, 7, 1, 3).

σ = (5, 6, 2, 4, 7, 1, 3).

σ = (5, 6, 2, 4, 7, 1, 3).

Let Λ(τ, σ) be the number of occurrences of τ in σ. The density of
the permutation τ as a subpermutation of σ is given by

t(τ, σ) =

(
n

m

)−1

Λ(τ, σ).
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Convergent permutation sequences

If τ is a fixed permutation and (σn)n∈N is a convergent sequence,
it would be natural to require that the real sequence (t(τ, σn))n∈N
converges.

Definition
A sequence of permutations (σn) is said to converge (weakly) if,
for every fixed permutation τ , the real sequence (t(τ, σn))n∈N
converges.
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Convergent permutation sequences

Example: Let σn be the identity permutation = (1, 2, . . . , n) on [n].

t(τ, σn) =

{
1, if τ is an identity permutation of size m ≤ n;
0, otherwise.

Example: Let πn be a random permutation on [n] (chosen uniformly).

E(t(τ, πn)) =

{
1/m!, if |τ | = m ≤ n;

0, if m > n.
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A limit for a permutation sequence?

Question: Is there a limit for a convergent permutation sequence?
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Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph Gσ
whose color classes A and B are disjoint copies of [n], and where
(a, b) ∈ A× B is an edge if and only if σ(a) < b.

σ = (2, 7, 4, 5, 1, 3, 6)
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Weighted permutations

σ = (2, 7, 4, 5, 1, 3, 6)
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Weighted permutations

σ = (2, 7, 4, 5, 1, 3, 6)
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Weighted permutations

σ = (2, 7, 4, 5, 1, 3, 6) and a partition P with three intervals.
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Weighted permutations
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Qσ,P =

1/2 1 3/4
1/2 4/9 2/6

0 1/6 0
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Weighted permutations

σ = (2, 7, 4, 5, 1, 3, 6) and a partition P with three intervals.

Qσ,P =

1/2 1 3/4
1/2 4/9 2/6

0 1/6 0

 The lines sum

2
1
0

 ≤
 9/4

23/18
1/6

 <
3

2
1


“Weighted permutation”
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Limit permutations

Definition
A limit permutation is a Lebesgue measurable function
Z : [0, 1]2 → [0, 1] satisfying:

(a) Z (x , ·) is a cdf (cum.distr.funct.) continuous at 0 and 1 (∀x ∈ [0, 1]);

(b) Z (·, y) is a measurable function (∀y ∈ [0, 1]) s.t.∫ 1

0
Z (x , y) dx = y .
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Density of subpermutations τ [m] in σ [n]

t(τ, σ) =
(n

m

)−1 ∑
x∈[n]m<

∑
y∈[n]mτ

m∏
i=1

(
σ(xi ) = yi

)
,

[n]m< : x = (x1 < x2 < . . . < xm) is increasing.
[n]mτ : y = (y1, . . . , ym) has the same relative order of τ : yτ−1(1) < . . . < yτ−1(m).

t(τ, σ) =
(n

m

)−1 ∑
x∈[n]m<

∑
y∈[n]mτ

m∏
i=1

(
Qσ(xi , yi + 1)− Qσ(xi , yi )

)

t(τ, σ) =
(n

m

)−1 ∑
x∈[n]m<

∑
y∈[n]mτ

m∏
i=1

(
Zσ

(
xi

n
,
yi + 1

n

)
− Zσ

( xi

n
,
yi

n

))

t(τ, σ) =m!

∫
x∈[0,1]m<

(∫
y∈[0,1]mτ

dZσ(x1, ·) · · · dZσ(xm, ·)
)
dx1 · · · dxm
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Density of subpermutations τ [m] in Z

Definition
Given a limit permutation Z : [0, 1]2 → [0, 1], the subpermutation
density of τ in Z is given by

t(τ,Z ) = m!

∫
[0,1]m<

(∫
[0,1]mτ

dZ (x1, ·) · · · dZ (xm, ·)
)

dx1 · · · dxm
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Existence of a limit

Theorem
Given a convergent sequence (σn)n∈N of permutations,
there exists a limit permutation Z : [0, 1]2 → [0, 1] s.t.

lim
n→∞

t(τ, σn) = t(τ,Z )

for every permutation τ .
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Uniqueness of the limit

Theorem
If Z1 and Z2 are limits to a sequence (σn),
then they differ only in a set of measure zero.

Theorem
Every limit permutation Z is the limit of
a convergent sequence of permutations.
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Random permutations

Given a limit permutation Z , the random permutation σ(n,Z ) is
generated as follows.

• We generate a sequence (x1 < x2 < · · · < xn) in [0, 1]n<
uniformly

• We generate a sequence (y1, . . . , yn) in [0, 1]n, where
yk is generated according to the probability distribution Z (xk , ·)

• σ(n,Z ) is given by the relative order of (y1, . . . , yn)
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Random permutations
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Random permutations

Theorem
If Z is a limit permutation, then, with probability 1, the random
sequence (σ(n,Z ))n∈N is convergent and its limit is Z .
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Weak convergence × Strong convergence

A sequence of permutations (σn)n∈Z is said to converge (strongly)
if it is a Cauchy sequence with respect to the rectangular distance.

Theorem

strong convergence ⇐⇒ weak convergence
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Rectangular distance

Definition
Given permutations σ1, σ2 on [n], the rectangular distance between
σ1 and σ2 is given by

d�(σ1, σ2) =
1

n
max

S,T∈I [n]

∣∣∣|σ1(S) ∩ T | − |σ2(S) ∩ T |
∣∣∣.

In particular, random permutations are close to each other with
high probability.
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Permutation parameters

Example: fp(σ) is the number of fixed points of σ.

σ = (7, 1, 3, 2, 5, 6, 4) fp(σ) = 3

Example: ord(σ) is the largest increasing subpermutation of σ.

σ = (7, 1, 3, 2, 5, 6, 4) ord(σ) = 4

Example: inv(σ) is the number of inversions in σ.

σ = (7, 1, 3, 2, 5, 6, 4) inv(σ) = 9

Property Testing and Parameter Testing for Permutations



Preliminaries Limit permutations Parameter testing Property testing Final remarks

Parameter testing

Parameter Testing
Question: Can one accurately predict the value of a parameter f (σ)
in constant time for every permutation σ?

Parameter Testing through subpermutations
Question: Can one accurately predict the value of a parameter f (σ)
by looking at a randomly chosen subpermutation of constant size?
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Parameter testing through subpermutations

Parameter Testing
Question: Can one accurately predict the value of a parameter f (σ)
in constant time for every permutation σ?

Parameter Testing through subpermutations
Question: Can one accurately predict the value of a parameter f (σ)
by looking at a randomly chosen subpermutation of constant size?

sub(k , σ): random subpermutation of σ on [k] (uniformly chosen)

σ = (5, 7, 2, 10, 1, 4, 8, 6, 3, 9) sub(4, σ) = (2, 4, 1, 3)
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Parameter testing through subpermutations

Objective: accurately predict the value of a parameter f (σ) by
looking at a randomly chosen subpermutation of much smaller size.

Definition
A parameter f is testable if,
For every ε > 0,
There exist positive integers k < n0 s.t.:

If σ is a permutation of length n > n0, then

P
(
|f (σ)− f (sub(k , σ))| > ε

)
≤ ε.
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Characterization of testable parameters

Theorem
A bounded permutation parameter is testable if and only if the
sequence (f (σn))n∈N converges for every convergent sequence
(σn)n∈N of permutations.

A permutation parameter f is bounded if there is a constant M such that |f (σ)| < M

for every permutation σ.
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Immediate consequences

Testable Permutation Parameters

• The subpermutation density fτ (σ)= t(τ, σ) for any fixed τ .

• The inversion density inv(σ) = t((2, 1), σ).

NOT Testable Permutation Parameters (through subpermutations)

• The fixed-point density.

• The density of a longest increasing subsequence.
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Property testing through subpermutations

We now want to look at more general properties of a permutation:

• Does it satisfy a given condition?

• Does it contain or avoid a given set of patterns?

Question: Can one predict the answer of such a question
accurately by looking at a small subpermutation?

Modified question: Can one at least predict accurately if a
permutation σ satisfies a property P or is far from satisfying it by
looking at a small subpermutation?
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Property testing through subpermutations

More precisely: a permutation property P is testable if, for every
ε > 0, there exist k ≤ n0 s.t. if σ is a permutation on [n] with
n ≥ n0, then with probability ≥ 1− ε:

(i) σ satisfies P =⇒ sub(k, σ) satisfies P
(ii) σ is ε-far from satisfying P =⇒ sub(k , σ) does not satisfy P

σ is ε-far from satisfying P if

d�(σ,P) = min{d�(σ, π) : π on [n] satisfies P} ≥ ε.
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Hereditary properties

A permutation property P is hereditary if, whenever σ satisfies P,
then all its subpermutations satisfy P.

Example: The property of avoiding a fixed pattern is hereditary.

Theorem
Every hereditary property is testable.
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Conclusion

• We developed a theory for convergence of permutation
sequences, along the lines of the theory introduced for graphs
by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi.

• A limit object was identified. It is essentially unique and leads
to a natural model of random permutations.

• This theory was applied to characterize a version of property
testing and parameter testing in the permutation framework.
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