Property Testing and Parameter Testing for Permutations

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with

Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil) Carlos Gustavo Moreira (IMPA, Rio de Janeiro, Brazil)

SODA 2010 (Austin-Texas, USA)

January 17, 2010 (9:25 - 9:45 AM) Session 1B

Basic definitions

A permutation σ on $[n] = \{1, 2, ..., n\}$ is a bijective function of the set [n] into itself.

(4,5,2,3,6,1) is a permutation on [6].

Objective

Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence of permutations.

Question: When does $(\sigma_n)_{n\in\mathbb{N}}$ converge?

A natural property

The permutation τ on [m] is a subpermutation of σ on [n] if there is a subsequence of σ with same relative order of τ .

Example:
$$\tau = (3, 1, 4, 2)$$
, $\sigma = (5, 6, 2, 4, 7, 1, 3)$.

$$\sigma = (5, 6, 2, 4, 7, 1, 3).$$

$$\sigma = (5, 6, 2, 4, 7, 1, 3).$$

A natural property

The permutation τ on [m] is a subpermutation of σ on [n] if there is a subsequence of σ with same relative order of τ .

Example: $\tau = (3, 1, 4, 2)$, $\sigma = (5, 6, 2, 4, 7, 1, 3)$.

$$\sigma = (5, 6, 2, 4, 7, 1, 3).$$

$$\sigma = (5, 6, 2, 4, 7, 1, 3).$$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ in σ . The density of the permutation τ as a subpermutation of σ is given by

$$t(\tau,\sigma) = \binom{n}{m}^{-1} \Lambda(\tau,\sigma).$$

Convergent permutation sequences

If τ is a fixed permutation and $(\sigma_n)_{n\in\mathbb{N}}$ is a convergent sequence, it would be natural to require that the real sequence $(t(\tau,\sigma_n))_{n\in\mathbb{N}}$ converges.

Definition

A sequence of permutations (σ_n) is said to converge (weakly) if, for every fixed permutation τ , the real sequence $(t(\tau, \sigma_n))_{n \in \mathbb{N}}$ converges.

Convergent permutation sequences

Example: Let σ_n be the identity permutation = (1, 2, ..., n) on [n].

$$t(\tau, \sigma_n) = \begin{cases} 1, & \text{if } \tau \text{ is an identity permutation of size } m \leq n; \\ 0, & \text{otherwise.} \end{cases}$$

Example: Let π_n be a random permutation on [n] (chosen uniformly).

$$\mathbb{E}(t(\tau,\pi_n)) = \begin{cases} 1/m!, & \text{if } |\tau| = m \leq n; \\ 0, & \text{if } m > n. \end{cases}$$

A limit for a permutation sequence?

Question: Is there a limit for a convergent permutation sequence?

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of [n], and where $(a,b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

7	1	0	1	1	1	1	1
6	1	0	1	1	1	1	0
5	1	0	1	0	1	1	0
4	1	0	0	0	1	1	0
3	1	0	0	0	1	0	0
2	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0
BA	1	2	3	4	5	6	7

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

7	1	0	1	1	1	1	1
6	1	0	1	1	1	1	0
5	1	0	1	0	1	1	0
4	1	0	0	0	1	1	0
3	1	Ω	0	0	1	Λ	Λ
-		0	v	_		V	v
2	0	0	0	0	1	0	0
2			0	0		0	0

 $\sigma = (2,7,4,5,1,3,6)$ and a partition \mathcal{P} with three intervals.

	7	1	0	1	1	1	1	1
	6	1	0	1	1	1	1	0
	5			1				
	4	1	0	0	0	1	1	0
	3	1	0	0	0	1	0	0
	2			0				
	1	0	0	0	0	0	0	0
E	A	1	2	3	4	5	6	7

$$Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}$$

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

7	1	0	1	1	1	1	1
6	1	0	1	1	1	1	0
5	1			0	1	1	0
4	1	0	0	0	1	1	0
3	-		_	_		_	_
3	1	0	0	0	1	0	0
2		0	0	0	1	0	0
		0		0	1	0	0

$$Q_{\sigma,\mathcal{P}} \ = \ \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}$$

The lines sum
$$\begin{bmatrix} 2\\1\\0 \end{bmatrix} \le \begin{bmatrix} 9/4\\23/18\\1/6 \end{bmatrix} < \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

Limit permutations

Definition

A limit permutation is a Lebesgue measurable function $Z:[0,1]^2 \to [0,1]$ satisfying:

- (a) $Z(x, \cdot)$ is a cdf (cum.distr.funct.) continuous at 0 and 1 ($\forall x \in [0, 1]$);
- (b) $Z(\cdot, y)$ is a measurable function $(\forall y \in [0, 1])$ s.t.

$$\int_0^1 Z(x,y) \ dx = y.$$

Density of subpermutations τ [m] in σ [n]

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{<}^{m}} \sum_{y \in [n]_{T}^{m}} \prod_{i=1}^{m} \left(\sigma(x_{i}) = y_{i}\right),$$

$$[n]_{<}^m: x = (x_1 < x_2 < \ldots < x_m)$$
 is increasing. $[n]_{\tau}^m: y = (y_1, \ldots, y_m)$ has the same relative order of $\tau: y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

Density of subpermutations au [m] in σ [n]

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{<}^{m}} \sum_{y \in [n]_{\tau}^{m}} \prod_{i=1}^{m} \left(\sigma(x_i) = y_i\right),$$

$$[n]_{<}^{m} : x = (x_1 < x_2 < \dots < x_m)$$
 is increasing.

$$[n]_{\tau}^{m}: y = (y_1, \ldots, y_m)$$
 has the same relative order of $\tau: y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{-m}^m} \sum_{y \in [n]_{-m}^m} \prod_{i=1}^m \left(Q_{\sigma}(x_i, y_i + 1) - Q_{\sigma}(x_i, y_i) \right)$$

Density of subpermutations τ $\overline{[m]}$ in σ $\overline{[n]}$

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{<}^m} \sum_{y \in [n]_{\tau}^m} \prod_{i=1}^m \left(\sigma(x_i) = y_i\right),$$

$$[n]_{<}^{m} : x = (x_1 < x_2 < \ldots < x_m)$$
 is increasing.

$$[n]_{\tau}^{m}: y = (y_1, \ldots, y_m)$$
 has the same relative order of $\tau: y_{\tau^{-1}(1)} < \ldots < y_{\tau^{-1}(m)}$.

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{\sigma}^{m}} \sum_{y \in [n]_{\tau}^{m}} \prod_{i=1}^{m} \left(Q_{\sigma}(x_{i}, y_{i}+1) - Q_{\sigma}(x_{i}, y_{i}) \right)$$

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{\sigma}^{m}} \sum_{y \in [n]_{\sigma}^{m}} \prod_{i=1}^{m} \left(Z_{\sigma}\left(\frac{x_{i}}{n}, \frac{y_{i}+1}{n}\right) - Z_{\sigma}\left(\frac{x_{i}}{n}, \frac{y_{i}}{n}\right) \right)$$

Density of subpermutations τ $_{[m]}$ in σ $_{[n]}$

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{<}^m} \sum_{y \in [n]_{\tau}^m} \prod_{i=1}^m \left(\sigma(x_i) = y_i\right),$$

 $[n]_{<}^{m} : x = (x_1 < x_2 < ... < x_m)$ is increasing.

 $[n]_{\tau}^{m}: y=(y_1,\ldots,y_m)$ has the same relative order of $\tau:y_{\tau^{-1}(1)}<\ldots< y_{\tau^{-1}(m)}$.

$$t(\tau,\sigma) = {n \choose m}^{-1} \sum_{x \in [n]_{<}^m} \sum_{y \in [n]_{\tau}^m} \prod_{i=1}^m \left(Q_{\sigma}(x_i, y_i + 1) - Q_{\sigma}(x_i, y_i) \right)$$

$$t(\tau,\sigma) = \binom{n}{m}^{-1} \sum_{x \in [n]_{s'}^{m}} \sum_{y \in [n]_{T'}^{m}} \prod_{i=1}^{m} \left(Z_{\sigma}\left(\frac{x_{i}}{n}, \frac{y_{i}+1}{n}\right) - Z_{\sigma}\left(\frac{x_{i}}{n}, \frac{y_{i}}{n}\right) \right)$$

$$t(\tau,\sigma) = m! \int_{x \in [0,1]_{<}^{m}} \left(\int_{y \in [0,1]_{x}^{m}} dZ_{\sigma}(x_{1},\cdot) \cdots dZ_{\sigma}(x_{m},\cdot) \right) dx_{1} \cdots dx_{m}$$

Density of subpermutations au $_{[m]}$ in Z

Definition

Given a limit permutation $Z:[0,1]^2 \to [0,1]$, the subpermutation density of τ in Z is given by

$$t(\tau, Z) = m! \int_{[0,1]_{<}^{m}} \left(\int_{[0,1]_{\tau}^{m}} dZ(x_{1}, \cdot) \cdots dZ(x_{m}, \cdot) \right) dx_{1} \cdots dx_{m}$$

Existence of a limit

Theorem

Given a convergent sequence $(\sigma_n)_{n\in\mathbb{N}}$ of permutations, there exists a limit permutation $Z:[0,1]^2\to [0,1]$ s.t.

$$\lim_{n\to\infty} t(\tau,\sigma_n) = t(\tau,Z)$$

for every permutation τ .

Uniqueness of the limit

Theorem

If Z_1 and Z_2 are limits to a sequence (σ_n) , then they differ only in a set of measure zero.

Uniqueness of the limit

Theorem

If Z_1 and Z_2 are limits to a sequence (σ_n) , then they differ only in a set of measure zero.

Theorem

Every limit permutation Z is the limit of a convergent sequence of permutations.

Random permutations

Given a limit permutation Z, the random permutation $\sigma(n, Z)$ is generated as follows.

- We generate a sequence $(x_1 < x_2 < \cdots < x_n)$ in $[0,1]^n_<$ uniformly
- We generate a sequence (y_1, \ldots, y_n) in $[0, 1]^n$, where y_k is generated according to the probability distribution $Z(x_k, \cdot)$
- $\sigma(n, Z)$ is given by the relative order of (y_1, \ldots, y_n)

Random permutations

Random permutations

Theorem

If Z is a limit permutation, then, with probability 1, the random sequence $(\sigma(n, Z))_{n \in \mathbb{N}}$ is convergent and its limit is Z.

Weak convergence × Strong convergence

A sequence of permutations $(\sigma_n)_{n\in\mathbb{Z}}$ is said to converge (strongly) if it is a Cauchy sequence with respect to the rectangular distance.

Theorem

Rectangular distance

Definition

Given permutations σ_1, σ_2 on [n], the rectangular distance between σ_1 and σ_2 is given by

$$d_{\square}(\sigma_1,\sigma_2) = \frac{1}{n} \max_{S,T \in I[n]} \left| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \right|.$$

In particular, random permutations are close to each other with high probability.

Permutation parameters

Example: $fp(\sigma)$ is the number of fixed points of σ .

$$\sigma = (7, 1, 3, 2, 5, 6, 4)$$
 $fp(\sigma) = 3$

Example: $ord(\sigma)$ is the largest increasing subpermutation of σ .

$$\sigma = (7, 1, 3, 2, 5, 6, 4)$$
 ord $(\sigma) = 4$

Example: $inv(\sigma)$ is the number of inversions in σ .

$$\sigma = (7, 1, 3, 2, 5, 6, 4)$$
 $inv(\sigma) = 9$

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter Testing through subpermutations

Question: Can one accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of constant size?

Parameter testing through subpermutations

Parameter Testing

Question: Can one accurately predict the value of a parameter $f(\sigma)$ in constant time for every permutation σ ?

Parameter Testing through subpermutations

Question: Can one accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of constant size?

 $sub(k, \sigma)$: random subpermutation of σ on [k] (uniformly chosen)

$$\sigma = (5, 7, 2, 10, 1, 4, 8, 6, 3, 9)$$
 $sub(4, \sigma) = (2, 4, 1, 3)$

Parameter testing through subpermutations

Objective: accurately predict the value of a parameter $f(\sigma)$ by looking at a randomly chosen subpermutation of much smaller size.

Definition

A parameter f is testable if, For every $\epsilon > 0$, There exist positive integers $k < n_0$ s.t.:

If σ is a permutation of length $n > n_0$, then

$$\mathbb{P}\Big(|f(\sigma)-f(sub(k,\sigma))|>\varepsilon\Big) \leq \varepsilon.$$

Characterization of testable parameters

Theorem

A bounded permutation parameter is testable if and only if the sequence $(f(\sigma_n))_{n\in\mathbb{N}}$ converges for every convergent sequence $(\sigma_n)_{n\in\mathbb{N}}$ of permutations.

A permutation parameter f is bounded if there is a constant M such that $|f(\sigma)| < M$ for every permutation σ .

Immediate consequences

Testable Permutation Parameters

- The subpermutation density $f_{\tau}(\sigma) = t(\tau, \sigma)$ for any fixed τ .
- The inversion density $inv(\sigma) = t((2,1), \sigma)$.

NOT Testable Permutation Parameters (through subpermutations)

- The fixed-point density.
- The density of a longest increasing subsequence.

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

Question: Can one predict the answer of such a question accurately by looking at a small subpermutation?

We now want to look at more general properties of a permutation:

- Does it satisfy a given condition?
- Does it contain or avoid a given set of patterns?

Question: Can one predict the answer of such a question accurately by looking at a small subpermutation?

Modified question: Can one at least predict accurately if a permutation σ satisfies a property \mathcal{P} or is far from satisfying it by looking at a small subpermutation?

More precisely: a permutation property \mathcal{P} is testable if, for every $\epsilon > 0$, there exist $k \leq n_0$ s.t. if σ is a permutation on [n] with $n \geq n_0$, then with probability $\geq 1 - \epsilon$:

- (i) σ satisfies \mathcal{P} \Longrightarrow $sub(k,\sigma)$ satisfies \mathcal{P}
- (ii) σ is ϵ -far from satisfying $\mathcal{P} \implies \mathit{sub}(k,\sigma)$ does not satisfy \mathcal{P}

 σ is ϵ -far from satisfying ${\mathcal P}$ if

$$d_{\square}(\sigma, \mathcal{P}) = \min\{d_{\square}(\sigma, \pi) : \pi \text{ on } [n] \text{ satisfies } \mathcal{P}\} \geq \epsilon.$$

Hereditary properties

A permutation property \mathcal{P} is hereditary if, whenever σ satisfies \mathcal{P} , then all its subpermutations satisfy \mathcal{P} .

Example: The property of avoiding a fixed pattern is hereditary.

Theorem

Every hereditary property is testable.

Conclusion

- We developed a theory for convergence of permutation sequences, along the lines of the theory introduced for graphs by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi.
- A limit object was identified. It is essentially unique and leads to a natural model of random permutations.
- This theory was applied to characterize a version of property testing and parameter testing in the permutation framework.

Property Testing and Parameter Testing for Permutations

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with

Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil) Carlos Gustavo Moreira (IMPA, Rio de Janeiro, Brazil)

SODA 2010 (Austin-Texas, USA)

January 17, 2010 (9:25 - 9:45 AM) Session 1B