PSPACE-hardness of two coloring games

PSPACE-hardness of two coloring games

Rudini Sampaio Universidade Federal do Ceará (UFC) Fortaleza, Brazil

Coautores

Ronan Pardo Soares (UFC, Fortaleza, Brazil) Victor Lage Pessoa (UFC, Fortaleza, Brazil) Eurinardo Costa (UFC, Fortaleza, Brazil)

LAGOS-2019, BH, June 03, 10h50

Introduction

Proper coloring

- The vertices of graph are colored
- Two adjacent vertices must receive distinct colors
- $\chi(G)$: chromatic number (min number in a proper coloring)

Greedy coloring

- Proper vertex coloring / colors are integers
- Take an ordering of the vertices.
- A vertex must receive the minimum available color.
- Γ(G): Grundy number (max number in a greedy coloring)

 $\chi(G) \leq \Gamma(G)$

+ ロ ト 4 同 ト 4 目 ト 4 目 ト 目 の Q (C)

PSPACE-hardness of two coloring games

Two graph coloring games

- ▶ Instance: a graph G and a set C of colors/integers
- Two players Alice and Bob alternate their turns in choosing an uncolored vertex to be proper colored by an integer of C
- Alice starts and she wins if all vertices are successfully colored; Otherwise, Bob wins the game
- Zermelo-von Neumann Th.: Alice or Bob has a winning strat

Graph coloring game $(\chi_g(G) \ge \chi(G))$

- Alice and Bob may use any possible integer of C
- Game chromatic number χ_g(G): minimum number of colors s.t. Alice has a winning strategy in the graph coloring game

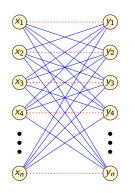
Greedy coloring game $(\chi(G) \leq \Gamma_g(G) \leq \Gamma(G))$

- Alice and Bob must use the smallest possible integer of C
- Game Grundy number Γ_g(G): minimum number of colors s.t. Alice has a winning strategy in the greedy coloring game

PSPACE-hardness of two coloring games

An example for both coloring games

- Complete bipartite graph without a matching
- If Alice is the first to play, Bob can force n colors: just play in the non-neighbor of Alice's last vertex.
- If Bob is the first to play, Alice wins with 2 colors.
 Normal game: Alice colors non-neighbor with other color.
 Greedy game: color same side of Bob's first vertex.



PSPACE-hardness of two coloring games

Known results Graph coloring game / Game chromatic number $\chi_g(G)$

- First considered by [Brams] and described by [Gardner'81, Math. Games column of Scientific American]
- Reinvented by [Bodlaender'91]: "The complexity of the Color Construction Game is an interesting open problem"
- forest \leq 4 [Faigle...'93], outerplanar \leq 7 [Kierstead...'94]
- $\chi_g \leq (\chi_a + 1)^2$ acyclic chromatic number χ_a [Dinski,Zhu'99]
- $\chi_g(P_k) \leq 3k + 2$ for partial k trees [Zhu'00]
- $\chi_g(G) \leq 5$ in cacti [Sidorowicz'07]
- Asympt. behavior $\chi_g(G(n, p))$ [Bohman, Frieze, Sudakov'08]
- Ex.value χ_g cartes prod K_2 w path/cycle/clique [Bartnick'08]
- Planar graphs: $\chi_g \leq 17$ [Zhu'08], $\chi_g \leq 13$ [Sekiguchi'14, girth ≥ 4], $\chi_g \leq 5$ [Nakprasit'18, girth ≥ 7]
- χ_g(F) poly forests no vertex deg 3 [Dunn et. al'15]:
 "more than two decades later, this question remains open".
- poly characterization game-perfect graphs [Andres,Lock'19]: "the question of PSPACE-hardness remains open".

PSPACE-hardness of two coloring games

Known results

Greedy coloring game / Game Grundy number $\Gamma_g(G)$

- Introduced by [Havet, Zhu'13]
- $\Gamma_g(G) = \chi(G)$ in cographs [Havet,Zhu'13]
- $\Gamma_g(F) \leq 3$ in forests [Havet, Zhu'13]
- $\chi_g(G) \leq 7$ in partial 2-trees [Havet, Zhu'13]
- Two questions of [Havet,Zhu'13]
 - (*) $\chi_g(G)$ is upper bounded by a function of $\Gamma_g(G)$?

- (**) $\Gamma_g(G) \leq \chi_g(G)$ for every graph G?
- ► (*) = NO [Krawczyk,Walczak'15]
- (**) is still open

PSPACE-hardness of two coloring games

Our results

Complexity results

- ▶ $\chi_g(G)$ is PSPACE-hard answer Bodlaender'91 open question
- Γ_g(G) is PSPACE-hard
- Both decision problems are PSPACE-Complete

Exact/algorithmic results

- $\Gamma_g(G) = \chi(G)$ poly for split graphs
- Γ_g(G) = χ(G) poly for extended P₄-laden graphs, a class in the top of a hierarchy of graphs with few P₄'s
- In both cases, Alice wins with χ(G) colors even if Bob can start the game and pass any turn

PSPACE-hardness of two coloring games

$\chi_g(G)$ is PSPACE-hard

Zhu'99 open question: Graph coloring game "*exhibits some strange properties*". Does Alice have a winning strategy with k + 1 colors if she has one with k colors?

We define three decision problems for the graph coloring game:

- (Problem 1) Given G and k: $\chi_g(G) \leq k$?
- (Problem 2) Given G and k: Does Alice have a winning strategy with k colors?
- (Problem 3) Given G and $\chi(G)$: $\chi_g(G) = \chi(G)$?

Problems 1 and 2 are equivalent **iff** Zhu's question is true. Problems 1 and 2 generalizations of Problem 3 - take $k = \chi(G)$

Problem 3 PSPACE-hard \rightarrow Problems 1 and 2 PSPACE-hard

Reduce POSCNF \rightarrow Problem 3: build *G* s.t. we know $\chi(G)$.

PSPACE-hardness of two coloring games

χ_{σ} : Reduction from POS-CNF

CNF formula, only positive variables, Alice and Bob alternate turns setting variables true or false. Alice wins if the formula is true.

Example

 $(X_1 \lor X_2) \land (X_1 \lor X_3) \land (X_2 \lor X_4) \land (X_3 \lor X_4).$ Bob has a winning strategy:

- X_1 True $\rightarrow X_4$ False; X_4 True $\rightarrow X_1$ False;

- X_2 True $\rightarrow X_3$ False; X_3 True $\rightarrow X_2$ False.

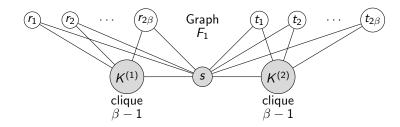
Good points

- POS-CNF is PSPACE-Complete
- If she/he has a winning strategy in POS-CNF, she/he also has a winning strategy if the opponent can pass turns.

PSPACE-hardness of two coloring games

Introduction χ_g PSPACE-hard Positive results

χ_g : Important ingredient of the Reduction



PSPACE-hardness of two coloring games

Introduction

 χ_g PSPACE-hard Γ_g PSPACE-hard Positive results Conclusion

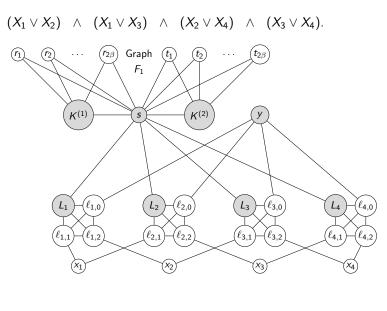
Lemma:

Alice has a winning strategy in F_1 with $2\beta - 1$ colors **iff** she colors vertex *s* first.

Proof:

If Alice does not color *s* first, Bob can color β vertices r_k/t_k , forcing 2β colors with clique $K^{(i)} \cup s$. If Alice colors *s* first, she can color $K^{(1)}$ and $K^{(2)}$ before Bob colors β vertices r_k/t_k .

χ_g : Reduction from POS-CNF

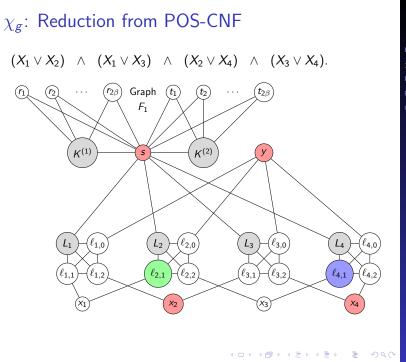


PSPACE-hardness of two coloring games

Introduction

 χ_g PSPACE-hard

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ



PSPACE-hardness of two coloring games

$\Gamma_g(G)$ is PSPACE-hard

Differently than the Graph Coloring Game, if Alice has a winning strategy with k + 1 colors in the greedy coloring game she has one with k colors.

We define two decision problems for the greedy coloring game:

- Problem 1') Given G and k: Γ_g(G) ≤ k ? That is: Does Alice have a winning strategy with k colors?
- (Problem 2') Given G and $\chi(G)$: $\Gamma_g(G) = \chi(G)$?

Problems 1' generalization of Problem 2' - take $k = \chi(G)$

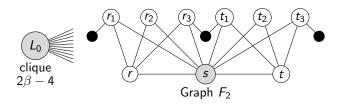
Problem 2' PSPACE-hard \rightarrow Problem 1' PSPACE-hard

Reduce POSCNF \rightarrow Problem 2': build G s.t. we know $\chi(G)$.

PSPACE-hardness of two coloring games

Introduction χ_g PSPACE-hard **F**_g **PSPACE-hard** Positive results Conclusion

Γ_g : Important ingredient of the Reduction



PSPACE-hardness of two coloring games

Introduction χ_g PSPACE-hard Γ_g PSPACE-hard Positive results Conclusion

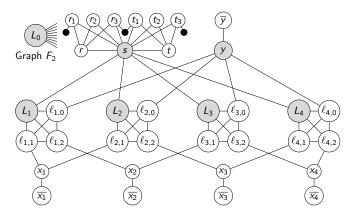
Lemma:

Alice has a winning strategy in F_2 with $2\beta - 1$ colors **iff** she colors vertex *s* first.

Proof:

If Alice does not color *s* first (assume *r* wlg), Bob colors t_2 and a black vertex with 1, forcing 4 colors in a triangle $s - t - t_i$. If Alice colors *s* first, she can color *r* and *t* with 2 or 3 (black vertices will be 1), forcing 3 colors.

Γ_g : Reduction from POS-CNF



PSPACE-hardness of two coloring games

Introduction χ_g PSPACE-hard Γ_g PSPACE-hard Positive results Conclusion

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Positive results

[Havet,Zhu'13]: $\Gamma_g(G) = \chi(G)$ for cographs (no induced P_4)

Cographs: $\chi(G) = \Gamma(G)$. Then $\Gamma_g(G) = \chi(G)$ (even if Bob starts and can pass any turn).

Superclasses of cographs:

- ► P₄-sparse, P₄-laden, P₄-tidy
- $\Gamma(G)$ can be larger than $\chi(G)$ as much as desired

Split graphs:

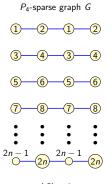
▶ partition $V = C \cup S$: Clique C and indepedent set S

$$\blacktriangleright \ \chi(G) \ \le \ \Gamma(G) \ \le \ \chi(G) + 1$$

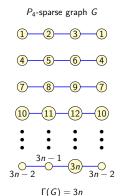
We prove $\Gamma_g(G) = \chi(G)$ (even if Bob starts / can pass any turn) in split graphs and extended P_4 -laden graphs.

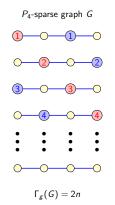
PSPACE-hardness of two coloring games

P_4 -sparse example: join of $n P_4$'s



 $\chi(G) = 2n$

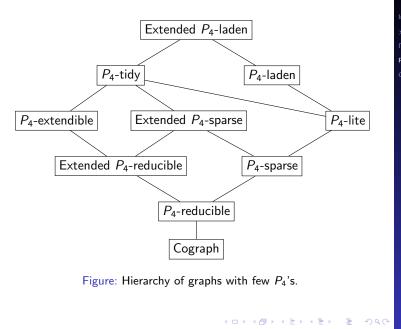




PSPACE-hardness of two coloring games

Introduction χ_g PSPACE-hard Γ_g PSPACE-hard **Positive results** Conclusion

Graph classes with few P_4 's



PSPACE-hardness of two coloring games

Extended P₄-laden graphs

Decomposition theorem [Giakoumakis'96]

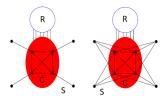
G is extended P_4 -laden iff one of the following holds:

- (a) G is the disjoint union or the join of two non-empty extended P₄-laden graphs;
- (b) G is a quasi-spider or a pseudo-split graph (R, C, S) such that G[R] is an extended P_4 -laden graph;
- (c) G is isomorphic to C_5 , P_5 , $\overline{P_5}$, or has at most one vertex.

PSPACE-hardness of two coloring games

Operations: union, join, spider

- Union $G = G_1 \cup G_2$: No edge between G_1 and G_2 .
- **Join** $G = G_1 \lor G_2$: All edges between G_1 and G_2 .



G is a **pseudo-split** (R, C, S) if:

- C induces a clique and S induces an independent set
- All edges from R to C and no edges from R to S

G is a **spider** if it is a pseudo-split (R, C, S) st:

- $C = \{c_1, \ldots, c_k\}$ and $S = \{s_1, \ldots, s_k\}$ for some $k \ge 2$
- **Thin spider**: s_i is adjacent to c_j if and only if i = j
- **Thick spider**: s_i is adjacent to c_j if and only if $i \neq j$

PSPACE-hardness of two coloring games

$\Gamma'_{g}(G)$: Bob can start and pass any turn

Let $\Gamma'_g(G)$ be the minimum number of colors st Alice has a winning strategy in the greedy coloring game even if Bob can start and pass any turn. $\chi(G) \leq \Gamma_g(G) \leq \Gamma'_g(G) \leq \Gamma(G)$.

Union and Join

$$\mathsf{F}'_g(G_1 \cup G_2) \leq \max\{\mathsf{F}'_g(G_1), \mathsf{F}'_g(G_2)\}$$

$$\mathsf{F}'_g(G_1 \vee G_2) \leq \mathsf{F}'_g(G_1) + \mathsf{F}'_g(G_2).$$

Pseudo-split, quasi-spider, C_5 , P_5 , $\overline{P_5}$

- G pseudo-split $(R, C, S) \implies \Gamma'_g(G) \le \Gamma'(G[R]) + |C|$
- G quasi-spider or $G \in \{C_5, P_5, \overline{P_5}\} \implies \Gamma'_g(G) = \chi(G)$

Extended P₄-laden

Applying the decomposition, we prove by induction that $\Gamma'_g(G) = \chi(G)$ for any extended P_4 -laden G.

PSPACE-hardness of two coloring games

Conclusion

Complexity results

- Game chromatic number $\chi_g(G)$ is PSPACE-hard, answering Bodlaender's 1991 open question
- Game Grundy number $\Gamma_g(G)$ is PSPACE-hard
- The Graph Coloring Game and the Greedy Coloring Game are PSPACE-Complete

Exact/algorithmic results for Γ_g

- $\Gamma_g(G) = \chi(G)$ poly for split graphs
- Γ_g(G) = χ(G) poly for extended P₄-laden graphs, a class in the top of a hierarchy of graphs with few P₄'s
- In both cases, Alice wins with χ(G) colors even if Bob can start the game and pass any turn

THANK YOU !!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

PSPACE-hardness of two coloring games