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Introduction

Proper coloring

I The vertices of graph are colored

I Two adjacent vertices must receive distinct colors

I χ(G ): chromatic number (min number in a proper coloring)

Greedy coloring

I Proper vertex coloring / colors are integers

I Take an ordering of the vertices.

I A vertex must receive the minimum available color.

I Γ(G ): Grundy number (max number in a greedy coloring)

χ(G ) ≤ Γ(G )
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Two graph coloring games

I Instance: a graph G and a set C of colors/integers

I Two players Alice and Bob alternate their turns in choosing
an uncolored vertex to be proper colored by an integer of C

I Alice starts and she wins if all vertices are successfully
colored; Otherwise, Bob wins the game

I Zermelo-von Neumann Th.: Alice or Bob has a winning strat

Graph coloring game (χg(G ) ≥ χ(G ))

I Alice and Bob may use any possible integer of C

I Game chromatic number χg (G ): minimum number of colors
s.t. Alice has a winning strategy in the graph coloring game

Greedy coloring game (χ(G ) ≤ Γg(G ) ≤ Γ(G ))

I Alice and Bob must use the smallest possible integer of C

I Game Grundy number Γg (G ): minimum number of colors
s.t. Alice has a winning strategy in the greedy coloring game
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An example for both coloring games

I Complete bipartite graph without a matching

I If Alice is the first to play, Bob can force n colors: just play
in the non-neighbor of Alice’s last vertex.

I If Bob is the first to play, Alice wins with 2 colors.
Normal game: Alice colors non-neighbor with other color.
Greedy game: color same side of Bob’s first vertex.

x1

x2

x3

x4

xn

y1

y2

y3

y4

yn

•
•
•

•
•
•



PSPACE-hardness of
two coloring games

Introduction

χg PSPACE-hard

Γg PSPACE-hard

Positive results

Conclusion

Known results
Graph coloring game / Game chromatic number χg(G )

• First considered by [Brams] and described by [Gardner’81,
Math. Games column of Scientific American]

• Reinvented by [Bodlaender’91]: “The complexity of the Color
Construction Game is an interesting open problem”

• forest ≤ 4 [Faigle...’93], outerplanar ≤ 7 [Kierstead...’94]

• χg ≤ (χa + 1)2 acyclic chromatic number χa [Dinski,Zhu’99]

• χg (Pk) ≤ 3k + 2 for partial k trees [Zhu’00]

• χg (G ) ≤ 5 in cacti [Sidorowicz’07]

• Asympt. behavior χg (G (n, p)) [Bohman, Frieze, Sudakov’08]

• Ex.value χg cartes prod K2 w path/cycle/clique [Bartnick’08]

• Planar graphs: χg ≤ 17 [Zhu’08], χg ≤ 13 [Sekiguchi’14,
girth≥ 4], χg ≤ 5 [Nakprasit’18, girth≥ 7]

I χg (F ) poly forests no vertex deg 3 [Dunn et. al’15]:
“more than two decades later, this question remains open”.

I poly characterization game-perfect graphs [Andres,Lock’19]:
“the question of PSPACE-hardness remains open”.
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Known results

Greedy coloring game / Game Grundy number Γg(G )

I Introduced by [Havet, Zhu’13]

I Γg (G ) = χ(G ) in cographs [Havet,Zhu’13]

I Γg (F ) ≤ 3 in forests [Havet, Zhu’13]

I χg (G ) ≤ 7 in partial 2-trees [Havet, Zhu’13]

I Two questions of [Havet,Zhu’13]
I (*) χg (G) is upper bounded by a function of Γg (G)?
I (**) Γg (G) ≤ χg (G) for every graph G?

I (*) = NO [Krawczyk,Walczak’15]

I (**) is still open
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Our results

Complexity results

I χg (G ) is PSPACE-hard answer Bodlaender’91 open question

I Γg (G ) is PSPACE-hard

I Both decision problems are PSPACE-Complete

Exact/algorithmic results

I Γg (G ) = χ(G ) poly for split graphs

I Γg (G ) = χ(G ) poly for extended P4-laden graphs, a class in
the top of a hierarchy of graphs with few P4’s

I In both cases, Alice wins with χ(G ) colors even if Bob can
start the game and pass any turn
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χg(G ) is PSPACE-hard

Zhu’99 open question: Graph coloring game “exhibits some
strange properties”. Does Alice have a winning strategy with k + 1
colors if she has one with k colors?

We define three decision problems for the graph coloring game:

I (Problem 1) Given G and k: χg (G ) ≤ k ?

I (Problem 2) Given G and k: Does Alice have a winning
strategy with k colors?

I (Problem 3) Given G and χ(G ): χg (G ) = χ(G ) ?

Problems 1 and 2 are equivalent iff Zhu’s question is true.
Problems 1 and 2 generalizations of Problem 3 - take k = χ(G )

Problem 3 PSPACE-hard → Problems 1 and 2 PSPACE-hard

Reduce POSCNF → Problem 3: build G s.t. we know χ(G ).
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χg : Reduction from POS-CNF

-
CNF formula, only positive variables, Alice and Bob alternate turns
setting variables true or false. Alice wins if the formula is true.

Example
(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).
Bob has a winning strategy:

• X1 True → X4 False; • X4 True → X1 False;

• X2 True → X3 False; • X3 True → X2 False.

Good points

I POS-CNF is PSPACE-Complete

I If she/he has a winning strategy in POS-CNF, she/he also
has a winning strategy if the opponent can pass turns.
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χg : Important ingredient of the Reduction

K (1) s K (2)

r1 r2 r2β t1 t2 t2β. . . . . .Graph
F1

clique
β − 1

clique
β − 1

Lemma:
Alice has a winning strategy in F1 with 2β − 1 colors iff she colors
vertex s first.

Proof:
If Alice does not color s first, Bob can color β vertices rk/tk ,
forcing 2β colors with clique K (i) ∪ s. If Alice colors s first, she
can color K (1) and K (2) before Bob colors β vertices rk/tk .



PSPACE-hardness of
two coloring games

Introduction

χg PSPACE-hard

Γg PSPACE-hard

Positive results

Conclusion

χg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

K (1) s K (2)

r1 r2 r2β t1 t2 t2β

y

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

. . . . . .Graph

F1
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χg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

K (1) s K (2)

r1 r2 r2β t1 t2 t2β

y

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

. . . . . .Graph

F1
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Γg(G ) is PSPACE-hard

Differently than the Graph Coloring Game, if Alice has a winning
strategy with k + 1 colors in the greedy coloring game she has one
with k colors.

We define two decision problems for the greedy coloring game:

I (Problem 1’) Given G and k: Γg (G ) ≤ k ? That is: Does
Alice have a winning strategy with k colors?

I (Problem 2’) Given G and χ(G ): Γg (G ) = χ(G ) ?

Problems 1’ generalization of Problem 2’ - take k = χ(G )

Problem 2’ PSPACE-hard → Problem 1’ PSPACE-hard

Reduce POSCNF → Problem 2’: build G s.t. we know χ(G ).
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Γg : Important ingredient of the Reduction

r s t

r1 r2 r3 t1 t2 t3

L0

Graph F2

clique
2β − 4

Lemma:
Alice has a winning strategy in F2 with 2β − 1 colors iff she colors
vertex s first.

Proof:
If Alice does not color s first (assume r wlg), Bob colors t2 and a
black vertex with 1, forcing 4 colors in a triangle s − t − ti . If
Alice colors s first, she can color r and t with 2 or 3 (black
vertices will be 1), forcing 3 colors.
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Γg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

r s t

r1 r2 r3 t1 t2 t3

L0

y

y

x1 x2 x3 x4

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

Graph F2
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Positive results

[Havet,Zhu’13]: Γg (G ) = χ(G ) for cographs (no induced P4)

Cographs: χ(G ) = Γ(G ). Then Γg (G ) = χ(G ) (even if Bob starts
and can pass any turn).

Superclasses of cographs:

I P4-sparse, P4-laden, P4-tidy

I Γ(G ) can be larger than χ(G ) as much as desired

Split graphs:

I partition V = C ∪ S : Clique C and indepedent set S

I χ(G ) ≤ Γ(G ) ≤ χ(G ) + 1

We prove Γg (G ) = χ(G ) (even if Bob starts / can pass any turn)
in split graphs and extended P4-laden graphs.
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P4-sparse example: join of n P4’s
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χ(G ) = 2n

P4-sparse graph G
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Γ(G ) = 3n

P4-sparse graph G
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Γg (G ) = 2n

P4-sparse graph G
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Graph classes with few P4’s

Extended P4-laden

P4-tidy P4-laden

P4-extendible Extended P4-sparse P4-lite

Extended P4-reducible P4-sparse

P4-reducible

Cograph

Figure: Hierarchy of graphs with few P4’s.
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Extended P4-laden graphs

Decomposition theorem [Giakoumakis’96]
G is extended P4-laden iff one of the following holds:

(a) G is the disjoint union or the join of two non-empty extended
P4-laden graphs;

(b) G is a quasi-spider or a pseudo-split graph (R,C ,S) such
that G [R] is an extended P4-laden graph;

(c) G is isomorphic to C5, P5, P5, or has at most one vertex.



PSPACE-hardness of
two coloring games

Introduction

χg PSPACE-hard

Γg PSPACE-hard

Positive results

Conclusion

Operations: union, join, spider

I Union G = G1 ∪ G2: No edge between G1 and G2.

I Join G = G1 ∨ G2: All edges between G1 and G2.

G is a pseudo-split (R,C ,S) if:

I C induces a clique and S induces an independent set

I All edges from R to C and no edges from R to S

G is a spider if it is a pseudo-split (R,C ,S) st:

I C = {c1, . . . , ck} and S = {s1, . . . , sk} for some k ≥ 2

I Thin spider: si is adjacent to cj if and only if i = j

I Thick spider: si is adjacent to cj if and only if i 6= j
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Γ′g(G ): Bob can start and pass any turn

Let Γ′
g (G ) be the minimum number of colors st Alice has a

winning strategy in the greedy coloring game even if Bob can start
and pass any turn. χ(G ) ≤ Γg (G ) ≤ Γ′

g (G ) ≤ Γ(G ).

Union and Join

I Γ′
g (G1 ∪ G2) ≤ max{Γ′

g (G1), Γ′
g (G2)};

I Γ′
g (G1 ∨ G2) ≤ Γ′

g (G1) + Γ′
g (G2).

Pseudo-split, quasi-spider, C5, P5, P5

I G pseudo-split (R,C ,S) =⇒ Γ′
g (G ) ≤ Γ′(G [R]) + |C |

I G quasi-spider or G ∈ {C5,P5,P5} =⇒ Γ′
g (G ) = χ(G )

Extended P4-laden
Applying the decomposition, we prove by induction that
Γ′
g (G ) = χ(G ) for any extended P4-laden G .
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Complexity results

I Game chromatic number χg (G ) is PSPACE-hard, answering
Bodlaender’s 1991 open question

I Game Grundy number Γg (G ) is PSPACE-hard

I The Graph Coloring Game and the Greedy Coloring Game are
PSPACE-Complete

Exact/algorithmic results for Γg

I Γg (G ) = χ(G ) poly for split graphs

I Γg (G ) = χ(G ) poly for extended P4-laden graphs, a class in
the top of a hierarchy of graphs with few P4’s

I In both cases, Alice wins with χ(G ) colors even if Bob can
start the game and pass any turn

THANK YOU !!
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