・ロト ・回ト ・ヨト ・ヨト

A note on random *k*-dimensional posets

Rudini Sampaio (UFC, Fortaleza, Brazil)

This is a joint work with Ricardo Corrêa (UFC, Fortaleza, Brazil) Carlos Hoppen (UFRGS, Porto Alegre, Brazil) Yoshiharu Kohayakawa (USP, São Paulo, Brazil)

LAGOS 2011 (Bariloche, Argentina) March 29, 2011 (16:20 - 16:45 AM) Session GT2

Basic definitions				
Permutation σ on $[n] = \{1, 2, \dots, n\}$.				
(4, 5, 2, 3, 6, 1) is a permutation on [6].				
Partially ordered sets (or just posets): reflexive, antisymmetric and transitive binary relation.				
\frown				

・ロン ・四と ・ヨン ・ヨ

Posets on [n]

Realizer: set of permutations the intersection of which generates the poset.

(1,2,3,5,4,6,7,8)(1,4,3,7,2,6,5,8)(1,2,4,6,3,5,7,8)

The dimension of a poset is the minimum size of a realizer.

Applications

Large Graphs, Permutations, Posets,...

Given a large graph, permutation or poset,

(日) (同) (E) (E) (E)

Large Graphs, Permutations, Posets,...

Given a large graph, permutation or poset,

Question: How can we estimate some parameter?

(日) (同) (E) (E) (E)

Large Graphs, Permutations, Posets,...

Given a large graph, permutation or poset,

Question: How can we estimate some parameter?

Question: How can we test if it satisfies some property?

Large Graphs, Permutations, Posets,...

Given a large graph, permutation or poset,

Question: How can we estimate some parameter?

Question: How can we test if it satisfies some property?

Question: How can we obtain some optimized substructure?

Convergent sequences

Given a sequence of objects (graphs, permutations, posets),

Question: when does it converge?

Question: There exists some limit object?

(日) (同) (E) (E) (E)

(日) (同) (E) (E) (E)

A limit permutation Z = (X, Y) is a pair of uniform random variables X and Y in [0, 1] (not necessarily independent).

reliminaries	Permutations	k-dim. posets	poset limits	Applications
	Lir	nit permutatio	on	
A <mark>limit</mark> variables	permutation $Z = S X$ and Y in [0, 1]	(X, Y) is a pair o l] (not necessarily	of uniform randor independent).	n
Z-rando	m permutation σ (X ₁ Y ₁) (X ₂	(n, Z) : Generate Y_n) Then $\sigma(n)$	according to Z $Z = S \circ R^{-1}$	where

n pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$. Then, $\sigma(n, Z) = S \circ R^{-1}$, whe R and S are the ranking of (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) , respectively.

reliminaries	Permutations	k-dim. posets	poset limits	Applications		
Limit permutation						
A <mark>limit</mark> variables	$\begin{array}{l} \text{ or } Z = \\ S X \text{ and } Y \text{ in } [0, 1] \end{array}$	(X, Y) is a pair c] (not necessarily	of uniform randoi independent).	m		
<i>Z</i> -rando <i>n</i> pairs (m permutation σ $(X_1, Y_1), \ldots, (X_n,$	(n, Z) : Generate Y_n). Then, $\sigma(n, Z)$	according to Z $Z) = S \circ R^{-1}$,	where		

R and S are the ranking of (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) ,

Example:

respectively.

$$\begin{pmatrix} X & 0.62 & 0.44 & 0.15 & 0.87 & 0.53 \\ Y & 0.33 & 0.11 & 0.98 & 0.25 & 0.67 \end{pmatrix} \rightarrow \begin{pmatrix} R & 4 & 2 & 1 & 5 & 3 \\ S & 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$
$$\sigma(n, Z) = (5, 1, 4, 3, 2)$$

 τ is subpermutation of σ if the relative order of τ appears in σ . Example: $\tau = (1, 3, 2), \sigma = (6, 4, 2, 7, 5, 1, 3).$ τ is subpermutation of σ if the relative order of τ appears in σ . Example: $\tau = (1, 3, 2), \sigma = (6, 4, 2, 7, 5, 1, 3).$

(日) (同) (E) (E) (E)

 $t(\tau, \sigma)$ is the proportion of subpermutations τ in σ .

 τ is subpermutation of σ if the relative order of τ appears in σ . Example: $\tau = (1, 3, 2), \sigma = (6, 4, 2, 7, 5, 1, 3).$

 $t(\tau, \sigma)$ is the proportion of subpermutations τ in σ .

Definition

A sequence of permutations (σ_n) is said to converge if, for every fixed permutation τ , the real sequence $(t(\tau, \sigma_n))_{n \in \mathbb{N}}$ converges.

・ロト ・回ト ・ヨト ・ヨト

Convergent permutation sequences

Theorem (Hoppen et al., 2010)

For every convergent permutation sequence (σ_n) , there exists a limit permutation Z = (X, Y), such that, for every permutation τ ,

$$\lim_{n\to\infty} t(\tau,\sigma_n) = t(\tau,Z) := \mathbb{P}\Big(\sigma(k,Z) = \tau\Big),$$

where k is the size of τ .

(日) (同) (E) (E) (E)

Convergent permutation sequences

Theorem (Hoppen et al., 2010)

For every convergent permutation sequence (σ_n) , there exists a limit permutation Z = (X, Y), such that, for every permutation τ ,

$$\lim_{n\to\infty} t(\tau,\sigma_n) = t(\tau,Z) := \mathbb{P}\Big(\sigma(k,Z) = \tau\Big),$$

where k is the size of τ .

Theorem (Hoppen et al., 2010)

Let Z be a limit permutation. The sequence $(\sigma(n, Z))_{n=1}^{\infty}$ converges to Z with probability one.

A sequence of k-dimensional posets can be represented by k sequences of permutations.

This suggests a limit for k-dimensional poset sequences.

Question: When does such a sequence converge?

Question: What kind of limit we have?

(日) (同) (E) (E) (E)

・ロン ・回と ・ヨン ・ヨン

Limit *k*-dimensional poset (or *k*-kernel)

A *k*-kernel $Z = (X_1, ..., X_k)$ is a tuple of *k* uniform random variables X_1 to X_k in [0, 1] (not necessarily independent).

(日) (同) (E) (E) (E)

Limit *k*-dimensional poset (or *k*-kernel)

A *k*-kernel $Z = (X_1, ..., X_k)$ is a tuple of *k* uniform random variables X_1 to X_k in [0, 1] (not necessarily independent).

Z-random poset P(n, Z): Generate according to Z n points $Y^{(i)} = (X_1^{(i)}, \dots, X_k^{(i)})$ of $[0, 1]^k$, for $i = 1, \dots, n$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Limit *k*-dimensional poset (or *k*-kernel)

A *k*-kernel $Z = (X_1, ..., X_k)$ is a tuple of *k* uniform random variables X_1 to X_k in [0, 1] (not necessarily independent).

Z-random poset P(n, Z): Generate according to Z n points $Y^{(i)} = (X_1^{(i)}, \dots, X_k^{(i)})$ of $[0, 1]^k$, for $i = 1, \dots, n$.

P(n, Z) is the poset $([n], \prec_P)$ such that $i \prec_P j$ if and only if $Y^{(i)} < Y^{(j)}$ (if and only if every coordinate of $Y^{(i)}$ is smaller than the corresponding coordinate of $Y^{(j)}$).

Limit *k*-dimensional poset (or *k*-kernel)

A *k*-kernel $Z = (X_1, ..., X_k)$ is a tuple of *k* uniform random variables X_1 to X_k in [0, 1] (not necessarily independent).

Z-random poset P(n, Z): Generate according to Z n points $Y^{(i)} = (X_1^{(i)}, \dots, X_k^{(i)})$ of $[0, 1]^k$, for $i = 1, \dots, n$.

P(n, Z) is the poset $([n], \prec_P)$ such that $i \prec_P j$ if and only if $Y^{(i)} < Y^{(j)}$ (if and only if every coordinate of $Y^{(i)}$ is smaller than the corresponding coordinate of $Y^{(j)}$).

This model generalizes the random k-dimensional poset model (just take the k-kernel Z_{ind} where X_1, \ldots, X_k are independent).

・ロト ・回ト ・ヨト ・ヨト

Convergent *k*-dim. poset sequences

Definition

A sequence of k-dimensional posets (B_n) is said to converge if, for every fixed poset P, the real sequence $(t(P, B_n))_{n \in \mathbb{N}}$ converges.

$t(P, B_n)$ is the probability that a random subposet of B_n has the same order of P.

Convergent k-dim. poset sequences

Definition

A sequence of k-dimensional posets (B_n) is said to converge if, for every fixed poset F, the real sequence $(t(F, B_n))_{n \in \mathbb{N}}$ converges.

Theorem (main result)

For every convergent k-dimensional poset sequence (B_n) , there exists a k-kernel $Z = (X_1, ..., X_k)$, such that, for every poset F,

$$\lim_{n\to\infty} t(F,B_n) = t(F,Z) := \mathbb{P}\Big(P(m,Z)=F\Big),$$

where m is the size of F.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

Convergent k-dim. poset sequences

Theorem (main result)

Let Z be a k-kernel. The sequence $(P(n, Z))_{n=1}^{\infty}$ converges to Z with probability one.

Theorem (main result)

For every convergent k-dimensional poset sequence (B_n) , there exists a k-kernel $Z = (X_1, ..., X_k)$, such that, for every poset F,

$$\lim_{n\to\infty}t(F,B_n) = t(F,Z) := \mathbb{P}\Big(P(k,Z)=F\Big),$$

where k is the size of F.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Uniqueness of the limit

Definition

Let Y(Z) be a random point in $[0,1]^k$ generated according to the *k*-kernel *Z*. The rectangular distance between *k*-kernels *Z* and *Z'*:

$$d_{\Box}(Z,Z') \;=\; \sup_{\Delta \in \prime [0,1]^k} \; \Big| \mathbb{P}ig(Y(Z) \in \Deltaig) - \mathbb{P}ig(Y(Z') \in \Deltaig) \Big|,$$

where $I[0,1]^k$ is the set of all k-dimensional intervals of $[0,1]^k$.

Uniqueness of the limit

Definition

Let Y(Z) be a random point in $[0,1]^k$ generated according to the *k*-kernel *Z*. The rectangular distance between *k*-kernels *Z* and *Z'*:

$$d_{\Box}(Z,Z') \;=\; \sup_{\Delta \in \prime [0,1]^k} \; \Big| \mathbb{P}ig(Y(Z) \in \Deltaig) - \mathbb{P}ig(Y(Z') \in \Deltaig) \Big|,$$

where $I[0,1]^k$ is the set of all k-dimensional intervals of $[0,1]^k$.

Theorem (main result) $\delta_{\Box}(Z, Z') = 0$ if and only if t(P, Z) = t(P, Z') for every poset P. That is, if $(B_n) \to Z$ and $(B_n) \to Z'$, then $\delta_{\Box}(Z, Z') = 0$.

Definition

A sequence (B_n) of k-dimensional posets is quasirandom if it converges to the k-kernel Z_{ind} .

Theorem

There exists a sequence (R_n) , where $R_n = (\sigma_{n,1}, \ldots, \sigma_{n,k})$ is a realizer of B_n , such that, for every pair $i \neq j \in [k]$, the permutation sequence $(\sigma_{n,i} \circ \sigma_{n,j}^{-1})$ is quasirandom in the sense of Cooper.

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter f(B) in constant time for every poset B?

Parameter testing

Parameter Testing

Question: Can one accurately predict the value of a parameter f(B) in constant time for every poset B?

Parameter Testing through subposets

Question: Can one accurately predict the value of a parameter f(B) by looking at a randomly chosen subposet of constant size?

Parameter testing through subposets

Parameter Testing

Question: Can one accurately predict the value of a parameter f(B) in constant time for every poset B?

Parameter Testing through subposets

Question: Can one accurately predict the value of a parameter f(B) by looking at a randomly chosen subposet of constant size?

(ロ) (同) (E) (E) (E)

Parameter testing through subposets

Objective: accurately predict the value of a parameter f(B) by looking at a randomly chosen subposet of much smaller size.

Definition

A parameter f is k-dim. testable if,

For every $\epsilon > 0$,

There exist positive integers $t < n_0$ s.t.:

If B is a k-dimensional poset of length $n > n_0$, then

$$\mathbb{P}\Big(|f(B) - f(sub(t, B))| > \varepsilon\Big) \leq \varepsilon$$

Parameter testing through subposets

Objective: accurately predict the value of a parameter f(B) by looking at a randomly chosen subposet of much smaller size.

Definition

- A parameter f is k-dim. testable if,
- For every $\epsilon > 0$,

There exist positive integers $t < n_0$ s.t.:

If B is a k-dimensional poset of length $n > n_0$, then

$$\mathbb{P}\Big(|f(B) - f(sub(t, B))| > \varepsilon\Big) \leq \varepsilon.$$

A parameter f is testable if it is k-dim testable, for every k.

(ロ) (同) (E) (E) (E)

Characterization of testable parameters

Theorem

A bounded poset parameter is k-dim. testable if and only if the sequence $(f(B_n))_{n \in \mathbb{N}}$ converges for every convergent sequence $(B_n)_{n \in \mathbb{N}}$ of k-dimensional posets.

A poset parameter f is bounded if there is a constant M such that |f(B)| < M for every poset σ .

Immediate consequences

Testable Poset Parameters

• The subposet density $f_P(B) = t(P, B)$ for any fixed P.

• The density of pairs.

NOT Testable Poset Parameters (through subposets)

- The height (over *n*).
- The width (over *n*).

・ロト ・回ト ・ヨト ・ヨト

A note on random *k*-dimensional posets

Rudini Sampaio (UFC, Fortaleza, Brazil)

This is a joint work with Ricardo Corrêa (UFC, Fortaleza, Brazil) Carlos Hoppen (UFRGS, Porto Alegre, Brazil) Yoshiharu Kohayakawa (USP, São Paulo, Brazil)

LAGOS 2011 (Bariloche, Argentina) March 29, 2011 (16:20 - 16:45 AM) Session GT2