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Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975),
with a lot of applications.

For every ε, any graph has an approximate(ε) description of
constant(ε) complexity by a composition of a structured and a
pseudo-random(ε) part.

Extensions: hypergraphs, permutations, . . .
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ε-regular pairs

A pair (A,B) is ε-regular if, for every pair (A′,B ′)

A′⊆A
B′⊆B, s.t. |A

′|≥ε|A|
|B′|≥ε|B| ⇒ d(A′,B ′) = d(A,B)± ε

where d(A, B) = e(A, B)/|A||B|.
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A pair (A,B) is ε-regular if, for every pair (A′,B ′)

A′⊆A
B′⊆B, s.t. |A

′|≥ε|A|
|B′|≥ε|B| ⇒ d(A′,B ′) = d(A,B)± ε

where d(A, B) = e(A, B)/|A||B|.

Obs: ε→ 0 ⇒ ε-regular pair “close” to random bipartite graph.
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Szemerédi Regularity Lemma

For every ε, there exists k such that any graph has an ε-regular
k-partition

Parts V1, . . . ,Vk with “same size” s.t. all but at most ε
(k

2

)
of the pairs (Vi ,Vj ) are

ε-regular.
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k-partition

Parts V1, . . . ,Vk with “same size” s.t. all but at most ε
(k

2

)
of the pairs (Vi ,Vj ) are

ε-regular.

Same size?

Equitable partition
|V1| = . . . = |Vk | with an exceptional set V0 with ≤ εn vertices

Or uniform partition
It is very easy to remove that exceptional set in the graph case⌊n

k

⌋
≤ |V1| ≤ . . . ≤ |Vk | ≤

⌈n

k

⌉
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Permutation Regularity Lemma

A permutation σ on [n] = {1, 2, . . . , n} is a bijective function of
the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutations are encoded as graphs. Similar to graph regularity.

Applications: quasirandomness, counting subpermutations,...
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Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph Gσ
whose color classes A and B are disjoint copies of [n], and where
(a, b) ∈ A× B is an edge if and only if σ(a) < b.
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Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph Gσ
whose color classes A and B are disjoint copies of [n], and where
(a, b) ∈ A× B is an edge if and only if σ(a) < b.

σ = (2, 7, 4, 5, 1, 3, 6)
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Partition into intervals

Cooper’s partition is into intervals and the proof is only for
equitable partitions (with an exceptional non-interval set C0)

A note on permutation regularity



Preliminaries Permutation regularity lemma Rectangular distance Counting subpermutations

Partition into intervals

A pair of intervals (Ca,Cb) is ε-regular if, for every pair (Ia, Ib) of
subintervals where

Ia⊆Ca
Ib⊆Cb

, s.t. |Ia|≥ε|Ca|
|Ib|≥ε|Cb| ⇒ d(Ia, Ib) = d(Ca,Cb)± ε

where d(Ia, Ib) = e(Ia, Ib)/|Ia||Ib|.

P
(

σ(x)<y :
(x ,y)∈Ia×Ib

)
= P

(
σ(x)<y :

(x ,y)∈Ca×Cb

)
± ε
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Cooper’s proof (2004) is only for equitable partitions (with an exceptional
non-interval set C0)

As in the graph case, is it obvious that we can use uniform partitions
(ignoring the exceptional set) ?
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Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009)
For every ε > 0 and m > 1
there exist M > m and n0 s.t.
For every permutation σ on [n] with n > n0

there exists a constant k ∈ [m,M] s.t.

Every uniform k-partition P = (Ci )
k
i=1 of σ is ε-regular. (Our result)

There exists an equitable k-partition P = (Ci )
k
i=1 of σ that is ε-regular. (Cooper)

The Permutation Regularity Lemma can also return a uniform
k-partition.

And more: For this value of k, all uniform partitions with k intervals

satisfy the regularity lemma.
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There exists an equitable k-partition P = (Ci )
k
i=1 of σ that is ε-regular. (Cooper)

Proof ideas:

• To prove this, we had to come back to Cooper’s proof.

• We obtain a sharper inequality that helps us to change a little bit the interval
sizes in the regularization process.

• With this, we force the interval extremities to be points of a uniform partition.
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k
i=1 of σ that is ε-regular. (Cooper)

Importance and applications:

• Partitions are more beautiful and the exceptional set was removed forever. :-)

• Now it is possible to apply successive regularizations that refine each other, like
in the seminal paper “Limits of dense graph sequences” of Lovász and Szegedy.

• We use a weaker version in another paper “Limits of permutation sequences”.
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Rectangular distance

There is an useful weaker version, based on a new distance
between permutations.

Definition (a new distance between permutations) Given permutations σ1, σ2 on [n],
the rectangular distance between σ1 and σ2 is given by

d�(σ1, σ2) =
1

n
max

S,T∈I [n]

∣∣∣|σ1(S) ∩ T | − |σ2(S) ∩ T |
∣∣∣.

• With high probability, random permutations are close in this
distance.

• Rectangular distance can be easily extended to weighted
permutations.
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Weighted permutations

σ = (2, 7, 4, 5, 1, 3, 6)
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Qσ,P =
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0 1/6 0
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Counting subpermutations

Example: τ = (3, 1, 4, 2), σ = (5, 6, 2, 4, 7, 1, 3).

σ = (5, 6, 2, 4, 7, 1, 3).
σ = (5, 6, 2, 4, 7, 1, 3).

Let Λ(τ, σ) be the number of occurrences of τ as a subpermutation of σ.
Let t(τ, σ) be the density of subpermutations τ in σ.

t(τ, σ) =
(n

m

)−1
Λ(τ, σ).

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that
appears in the same relative order of τ .

A note on permutation regularity
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