・ロン ・聞と ・ほと ・ほと

A note on permutation regularity

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil)

November 05, 2009 (9:10 - 9:35 AM) LAGOS 2009 (Gramado, RS, Brazil)

Counting subpermutations

・ロン ・回と ・ヨン ・ヨン

æ

A note on permutation regularity

Preliminaries

Permutation regularity lemma

Rectangular distance

Counting subpermutations

Counting subpermutations

・ロト ・回ト ・ヨト ・ヨト

3

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

・ロト ・回ト ・ヨト ・ヨト

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

For every ε , any **graph** has an approximate(ε) description of constant(ε) complexity by a composition of a structured and a pseudo-random(ε) part.

(ロ) (同) (E) (E) (E)

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

For every ε , any **graph** has an approximate(ε) description of constant(ε) complexity by a composition of a structured and a pseudo-random(ε) part.

Extensions: hypergraphs, permutations, ...

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A \\ B' \subseteq B$, s.t. $|A'| \ge \varepsilon |A| \\ |B'| \ge \varepsilon |B| \Rightarrow d(A', B') = d(A, B) \pm \varepsilon$ where d(A, B) = e(A, B)/|A||B|.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A \\ B' \subseteq B$, s.t. $|A'| \ge \varepsilon |A| \\ |B'| \ge \varepsilon |B| \Rightarrow d(A', B') = d(A, B) \pm \varepsilon$ where d(A, B) = e(A, B)/|A||B|.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - つへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A \\ B' \subseteq B$, s.t. $|A'| \ge \varepsilon |A| \\ |B'| \ge \varepsilon |B| \Rightarrow d(A', B') = d(A, B) \pm \varepsilon$ where d(A, B) = e(A, B)/|A||B|.

Obs: $\varepsilon \to 0 \Rightarrow \varepsilon$ -regular pair "close" to random bipartite graph.

ヘロン ヘヨン ヘヨン ヘヨン

æ

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

・ロン ・回 と ・ヨン ・ヨン

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

イロン イヨン イヨン イヨン

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

・ロン ・回 と ・ヨン ・ヨン

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

Same size?

(ロ) (同) (E) (E) (E)

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

Same size?

Equitable partition $|V_1| = \ldots = |V_k|$ with an exceptional set V_0 with $\leq \varepsilon n$ vertices

Szemerédi Regularity Lemma

For every ε , there exists k such that **any graph** has an ε -regular *k*-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon \binom{k}{2}$ of the pairs (V_i, V_j) are ε -regular.

Same size?

Equitable partition $|V_1| = \ldots = |V_k|$ with an exceptional set V_0 with $\leq \varepsilon n$ vertices

Or uniform partition

It is very easy to remove that exceptional set in the graph case

$$\left\lfloor \frac{n}{k} \right\rfloor \le |V_1| \le \ldots \le |V_k| \le \left\lceil \frac{n}{k} \right\rceil$$

イロト イポト イヨト イヨト 二日

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, ..., n\}$ is a bijective function of the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].

イロト イロト イヨト イヨト 二日

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, ..., n\}$ is a bijective function of the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, ..., n\}$ is a bijective function of the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutations are encoded as graphs. Similar to graph regularity.

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, ..., n\}$ is a bijective function of the set [n] into itself.

(4, 5, 2, 3, 6, 1) is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutations are encoded as graphs. Similar to graph regularity. Applications: quasirandomness, counting subpermutations,...

・ロン ・回と ・ヨン・

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of [n], and where $(a, b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of [n], and where $(a, b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

(ロ) (同) (E) (E) (E)

Partition into intervals

Cooper's partition is into intervals and the proof is only for equitable partitions (with an exceptional non-interval set C_0)

Partition into intervals

A pair of intervals (C_a, C_b) is ε -regular if, for every pair (I_a, I_b) of subintervals where

 $\begin{array}{ll} I_a \subseteq C_a \\ I_b \subseteq C_b, \ \text{s.t.} \ \frac{|I_a| \geq \varepsilon |C_a|}{|I_b| \geq \varepsilon |C_b|} \ \Rightarrow \ d(I_a, I_b) \ = \ d(C_a, C_b) \pm \varepsilon \end{array}$

where $d(I_a, I_b) = e(I_a, I_b)/|I_a||I_b|$.

$$\mathbb{P} \begin{pmatrix} \sigma(x) < y : \\ (x,y) \in I_a \times I_b \end{pmatrix} = \mathbb{P} \begin{pmatrix} \sigma(x) < y : \\ (x,y) \in C_a \times C_b \end{pmatrix} \pm \varepsilon$$

◆□> ◆□> ◆豆> ◆豆> ●豆 → のへで

・ロト ・回ト ・ヨト ・ヨト

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

(日) (同) (E) (E) (E)

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

(日) (同) (E) (E) (E)

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

Counting subpermutations

<ロ> (四) (四) (三) (三) (三)

Our main result

The Permutation Regularity Lemma can also return a uniform k-partition.

Counting subpermutations

Our main result

The Permutation Regularity Lemma can also return a uniform k-partition.

And more: For this value of k, all uniform partitions with k intervals satisfy the regularity lemma.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

The Permutation Regularity Lemma can also return a uniform *k*-partition.

And more: For this value of k, all uniform partitions with k intervals satisfy the regularity lemma.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009)For every $\varepsilon > 0$ and m > 1there existM > m and n_0 s.t.For everypermutation σ on [n] with $n > n_0$ there exists a constant $k \in [m, M]$ s.t.Everyuniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there exist M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there exist M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there exist M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

Importance and applications:

- Partitions are more beautiful and the exceptional set was removed forever. :-)
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

Importance and applications:

- Partitions are more beautiful and the exceptional set was removed forever. :-)
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

Importance and applications:

- Partitions are more beautiful and the exceptional set was removed forever. :-)
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and m > 1there **exist** M > m and n_0 s.t. For every permutation σ on [n] with $n > n_0$ there **exists** a constant $k \in [m, M]$ s.t. Every uniform k-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable k-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

Importance and applications:

- Partitions are more beautiful and the exceptional set was removed forever. :-)
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

・ロン ・聞と ・ほと ・ほと

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted permutations.

・ロト ・回ト ・ヨト ・ヨト

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on [n], the rectangular distance between σ_1 and σ_2 is given by

$$d_{\Box}(\sigma_1,\sigma_2) = \frac{1}{n} \max_{S,T \in I[n]} \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted permutations.

(日) (同) (E) (E) (E)

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on [n], the rectangular distance between σ_1 and σ_2 is given by

$$d_{\Box}(\sigma_1,\sigma_2) = rac{1}{n} \max_{\substack{S,T \in I[n]}} \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted permutations.

(日) (同) (E) (E) (E)

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on [n], the rectangular distance between σ_1 and σ_2 is given by

$$d_{\Box}(\sigma_1,\sigma_2) \;=\; rac{1}{n} \max_{egin{smallmatrix} S,\, T\in I[n] \ N} \left| |\sigma_1(S)\cap T| - |\sigma_2(S)\cap T|
ight|.$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted permutations.

Weighted permutations

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

・ロン ・回 と ・ ヨン ・ ヨン

Э

Weighted permutations

$$\sigma = (2, 7, 4, 5, 1, 3, 6)$$

イロン 不同と 不同と 不同と

æ

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

$$Q_{\sigma,\mathcal{P}} = egin{bmatrix} 1/2 & 1 & 3/4 \ 1/2 & 4/9 & 2/6 \ 0 & 1/6 & 0 \end{bmatrix}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → つへぐ

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

$$Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}$$
 The lines sum $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \le \begin{bmatrix} 9/4 \\ 23/18 \\ 1/6 \end{bmatrix} < \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 - 釣 < ⊙

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition \mathcal{P} with three intervals.

$$Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}$$

The lines sum
$$\begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} \le \begin{vmatrix} 9/4 \\ 23/18 \\ 1/6 \end{vmatrix}$$

"Weighted permutation"

・ロト ・回ト ・ヨト ・ヨー うらぐ

 $< \begin{bmatrix} 3\\2\\1 \end{bmatrix}$

Counting subpermutations

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that appears in the same relative order of τ .

イロト イポト イヨト イヨト 二日

Counting subpermutations

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that appears in the same relative order of τ .

Counting subpermutations

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that appears in the same relative order of τ .

うせん 川田 (山田) (田) (日)

Example:
$$\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that appears in the same relative order of τ .

Example:
$$\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ .

The permutation τ on [m] is a subpermutation of σ if there is m elements of σ that appears in the same relative order of τ .

イロト イポト イヨト イヨト 二日

Counting subpermutations

Example:
$$\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$t(\tau,\sigma) = {\binom{n}{m}}^{-1} \Lambda(\tau,\sigma).$$

Counting subpermutations

Example:
$$\tau = (3, 1, 4, 2)$$
, $\sigma = (5, 6, 2, 4, 7, 1, 3)$.

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$t(\tau,\sigma) = {\binom{n}{m}}^{-1} \Lambda(\tau,\sigma).$$

Theorem (Hoppen, Kohayakawa, Sampaio, 2009)

Let *n* and *m* be integers s.t. $n \ge 2m$ and let τ be a permutation on [m]. Then, given permutations σ_1 and σ_2 on [n], we have

$$|t(\tau,\sigma_1)-t(\tau,\sigma_2)| \leq 2m^2 \cdot d_{\Box}(\sigma_1,\sigma_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Counting subpermutations

Example:
$$\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$t(\tau,\sigma) = {\binom{n}{m}}^{-1} \Lambda(\tau,\sigma).$$

It is easy to extend the density of subpermutations au to a weighted permutation Q.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) Let *n* and *m* be integers s.t. $n \ge 2m$ and let τ be a permutation on [m]. Then, given permutations σ_1 and σ_2 on [n], we have

$$|t(\tau,\sigma_1)-t(\tau,\sigma_2)| \leq 2m^2 \cdot d_{\Box}(\sigma_1,\sigma_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Counting subpermutations

Example:
$$\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$t(\tau,\sigma) = {\binom{n}{m}}^{-1} \Lambda(\tau,\sigma).$$

It is easy to extend the density of subpermutations au to a weighted permutation Q.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) Let *n* and *m* be integers s.t. $n \ge 2m$ and let τ be a permutation on [m]. Then, given permutations σ_1 and σ_2 on [n], we have

$$|t(\tau,\sigma_1)-t(\tau,\sigma_2)|\leq 2m^2\cdot d_{\Box}(\sigma_1,\sigma_2)$$

Moreover, given weighted permutations Q_1 and Q_2 on [n], we have

$$|t(au, Q_1) - t(au, Q_2)| \leq 2m^2 \cdot d_{\Box}(Q_1, Q_2)$$

・ロン ・聞と ・ほと ・ほと

A note on permutation regularity

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil)

November 05, 2009 (9:10 - 9:35 AM) LAGOS 2009 (Gramado, RS, Brazil)