A note on permutation regularity

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil)

November 05, 2009 (9:10 - 9:35 AM) LAGOS 2009 (Gramado, RS, Brazil)

 \equiv

 Ω

A note on permutation regularity

[Preliminaries](#page-1-0)

[Permutation regularity lemma](#page-15-0)

[Rectangular distance](#page-38-0)

[Counting subpermutations](#page-48-0)

 Ω

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

◆ロ→ ◆*団***→ ◆ミ→ → ミ**→

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

For every ε , any graph has an approximate(ε) description of constant(ε) complexity by a composition of a structured and a pseudo-random (ε) part.

K ロン K 御 X K ヨン K ヨン - ヨ

Szemerédi Regularity Lemma

An important tool in Graph Theory and Combinatorics (1975), with a lot of applications.

For every ε , any graph has an approximate(ε) description of constant(ε) complexity by a composition of a structured and a pseudo-random(ε) part.

Extensions: hypergraphs, permutations, . . .

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A$ $\begin{array}{rcl} A'\subseteq A \ B'\subseteq B, \end{array} \text{s.t.} \begin{array}{rcl} |A'|\geq \varepsilon |A| & \Rightarrow & d(A',B') & = & d(A,B) \pm \varepsilon \end{array}$ where $d(A, B) = e(A, B)/|A||B|$.

イロン イ団ン イミン イミン 一番 $2Q$

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A$ $\begin{array}{rcl} A'\subseteq A \ B'\subseteq B, \end{array} \text{s.t.} \begin{array}{rcl} |A'|\geq \varepsilon |A| & \Rightarrow & d(A',B') & = & d(A,B) \pm \varepsilon \end{array}$ where $d(A, B) = e(A, B)/|A||B|$.

イロン イ団ン イミン イミン 一番 $2Q$

KORK@RKERKER E 1990

ε -regular pairs

A pair (A, B) is ε -regular if, for every pair (A', B') $A' \subseteq A$ $\begin{array}{rcl} A'\subseteq A \ B'\subseteq B, \end{array} \text{s.t.} \begin{array}{rcl} |A'|\geq \varepsilon |A| & \Rightarrow & d(A',B') & = & d(A,B) \pm \varepsilon \end{array}$

where $d(A, B) = e(A, B)/|A||B|$.

Obs: $\varepsilon \to 0 \Rightarrow \varepsilon$ -regular pair "close" to random bipartite graph.

 Ω

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

 Ω

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε-regular.

イロト イ押 トイモト イモト

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε-regular.

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε-regular.

イロト イ押 トイモト イモト Ω

◆ロ→ ◆*団***→ ◆ミ→ → ミ**→

 Ω

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε-regular.

Same size?

 $(1 - 4)$ $(1 -$

 Ω

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε -regular.

Same size?

Equitable partition $|V_1| = \ldots = |V_k|$ with an exceptional set V_0 with $\leq \varepsilon n$ vertices

 $(1 - 4)$ $(1 -$

 Ω

Szemerédi Regularity Lemma

For every ε , there exists k such that any graph has an ε -regular k-partition

Parts V_1, \ldots, V_k with "same size" s.t. all but at most $\varepsilon {k \choose 2}$ of the pairs (V_i, V_j) are ε-regular.

Same size?

Equitable partition $|V_1| = \ldots = |V_k|$ with an exceptional set V_0 with $\leq \varepsilon n$ vertices

Or uniform partition

It is very easy to remove that exceptional set in the graph case

$$
\left\lfloor\frac{n}{k}\right\rfloor\leq|V_1|\leq\ldots\leq|V_k|\leq\left\lceil\frac{n}{k}\right\rceil
$$

 Ω

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, \ldots, n\}$ is a bijective function of the set $[n]$ into itself.

 $(4, 5, 2, 3, 6, 1)$ is a permutation on [6].

 Ω

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, \ldots, n\}$ is a bijective function of the set $[n]$ into itself.

 $(4, 5, 2, 3, 6, 1)$ is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ X 9 Q Q

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, \ldots, n\}$ is a bijective function of the set $[n]$ into itself.

 $(4, 5, 2, 3, 6, 1)$ is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutations are encoded as graphs. Similar to graph regularity.

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ X 9 Q Q

Permutation Regularity Lemma

A permutation σ on $[n] = \{1, 2, \ldots, n\}$ is a bijective function of the set $[n]$ into itself.

 $(4, 5, 2, 3, 6, 1)$ is a permutation on [6].

Permutation Regularity Lemma (Cooper, 2004)

Permutations are encoded as graphs. Similar to graph regularity. Applications: quasirandomness, counting subpermutations,...

イロト イ団 トイ ミト イヨト

へのへ

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of $[n]$, and where $(a, b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

Encoding permutations

A permutation σ on [n] can be encoded as a bipartite graph G_{σ} whose color classes A and B are disjoint copies of $[n]$, and where $(a, b) \in A \times B$ is an edge if and only if $\sigma(a) < b$.

$$
\sigma=(2,7,4,5,1,3,6)
$$

イロメ イ部メ イヨメ イヨメー へのへ

 Ω

Partition into intervals

Cooper's partition is into intervals and the proof is only for equitable partitions (with an exceptional non-interval set C_0)

Partition into intervals

A pair of intervals (C_a, C_b) is ε -regular if, for every pair (I_a, I_b) of subintervals where

 $I_a \subseteq C_a$, s.t. $|I_a| \geq \varepsilon |C_a|$ \Rightarrow $d(I_a, I_b) = d(C_a, C_b) \pm \varepsilon$

where $d(I_a, I_b) = e(I_a, I_b) / |I_a| |I_b|$.

$$
\mathbb{P}\begin{pmatrix} \sigma(x)
$$

イロン イ母ン イミン イモンニ き Ω

 Ω

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

イロン イ団ン イミン イミン 一番

 Ω

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

イロン イ団ン イミン イミン 一番

 Ω

Partition into intervals

Cooper's proof (2004) is only for equitable partitions (with an exceptional non-interval set C_0)

As in the graph case, is it obvious that we can use uniform partitions (ignoring the exceptional set) ?

メロメ イ団メ メモメ メモメー 毛

 $2Q$

Our main result

The Permutation Regularity Lemma can also return a uniform k-partition.

 Ω

Our main result

The Permutation Regularity Lemma can also return a uniform k-partition.

And more: For this value of k , all uniform partitions with k intervals satisfy the regularity lemma.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

The Permutation Regularity Lemma can also return a uniform k-partition.

And more: For this value of k , all uniform partitions with k intervals satisfy the regularity lemma.

 Ω

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

 $(1 - 4)$ $(1 -$

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there **exist** $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval
-

 $(1 - 4)$ $(1 -$

 Ω

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

4 ロ X 4 団 X 4 ミ X 4 ミ X ミ X 9 Q Q

Our main result

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- To prove this, we had to come back to Cooper's proof.
- We obtain a sharper inequality that helps us to change a little bit the interval sizes in the regularization process.
- With this, we force the interval extremities to be points of a uniform partition.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- Partitions are more beautiful and the exceptional set was removed forever. :-)
- Now it is possible to apply successive regularizations that refine each other, like
-

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- Partitions are more beautiful and the exceptional set was removed forever. $:$
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there exist $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- Partitions are more beautiful and the exceptional set was removed forever. $:-)$
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) For every $\varepsilon > 0$ and $m > 1$ there **exist** $M > m$ and n_0 s.t. For every permutation σ on $[n]$ with $n > n_0$ there exists a constant $k \in [m, M]$ s.t. Every uniform *k*-partition $P = (C_i)_{i=1}^k$ of σ is ε -regular. (Our result)

There exists an equitable *k*-partition $P = (C_i)_{i=1}^k$ of σ that is ε -regular. (Cooper)

- Partitions are more beautiful and the exceptional set was removed forever. $:-)$
- Now it is possible to apply successive regularizations that refine each other, like in the seminal paper "Limits of dense graph sequences" of Lovász and Szegedy.
- We use a weaker version in another paper "Limits of permutation sequences".

イロト イ団 トイ ミト イヨト

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

- With high probability, random permutations are close in this
-

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on $[n]$, the rectangular distance between σ_1 and σ_2 is given by

$$
d_{\square}(\sigma_1,\sigma_2) \;=\; \frac{1}{n} \max_{S,\, T \in I[n]} \; \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.
$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted

イロン イ団ン イミン イミン 一番

 Ω

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on $[n]$, the rectangular distance between σ_1 and σ_2 is given by

$$
d_{\square}(\sigma_1,\sigma_2) \;=\; \frac{1}{n} \max_{S,\, T \in I[n]} \; \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.
$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted

 $(1 - 4)$ $(1 -$

 Ω

Rectangular distance

There is an useful weaker version, based on a new distance between permutations.

Definition (a new distance between permutations) Given permutations σ_1, σ_2 on $[n]$, the rectangular distance between σ_1 and σ_2 is given by

$$
d_{\square}(\sigma_1,\sigma_2) \;=\; \frac{1}{n} \max_{S,\, T \in I[n]} \; \Big| |\sigma_1(S) \cap T| - |\sigma_2(S) \cap T| \Big|.
$$

- With high probability, random permutations are close in this distance.
- Rectangular distance can be easily extended to weighted permutations.

Weighted permutations

$$
\sigma=(2,7,4,5,1,3,6)
$$

メロメメ 御き メモメメモド

 \equiv

 $2Q$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 $2Q$

Weighted permutations

$$
\sigma=(2,7,4,5,1,3,6)
$$

イロト イ押 トイモト イモト

 $2Q$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

イロト イ押 トイモト イモト

 $2Q$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

$$
Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}
$$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

$$
Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}
$$
 The lines sum $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \le \begin{bmatrix} 9/4 \\ 23/18 \\ 1/6 \end{bmatrix} < \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁ $2Q$

Weighted permutations

 $\sigma = (2, 7, 4, 5, 1, 3, 6)$ and a partition P with three intervals.

$$
Q_{\sigma,\mathcal{P}} = \begin{bmatrix} 1/2 & 1 & 3/4 \\ 1/2 & 4/9 & 2/6 \\ 0 & 1/6 & 0 \end{bmatrix}
$$
 The lines sum $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \le \begin{bmatrix} 9/4 \\ 23/18 \\ 1/6 \end{bmatrix}$
"Weighted permutation"

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁ $2Q$

f $\overline{1}$ 3 2 1

1 $\overline{1}$

Counting subpermutations

 Ω

Counting subpermutations

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

 Ω

Counting subpermutations

Example: $\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

$$
A \subseteq A \land A \subseteq B \land A \subseteq B \land A \subseteq B \land A \subseteq C
$$

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ .

$$
\langle \Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rightarrow \langle \Xi \rangle \rangle \quad \Xi \rightarrow \Box \Box \Diamond
$$

◆ロ→ ◆*団***→ ◆ミ→ → ミ**→

 Ω

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$
t(\tau,\sigma)=\left(\frac{n}{m}\right)^{-1}\Lambda(\tau,\sigma).
$$

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$
t(\tau,\sigma)=\left(\frac{n}{m}\right)^{-1}\Lambda(\tau,\sigma).
$$

Theorem (Hoppen, Kohayakawa, Sampaio, 2009)

Let *n* and *m* be integers s.t. $n \ge 2m$ and let τ be a permutation on $[m]$. Then, given permutations σ_1 and σ_2 on [n], we have

$$
|t(\tau,\sigma_1)-t(\tau,\sigma_2)|\leq 2m^2\cdot d_{\square}(\sigma_1,\sigma_2)
$$

 $(1 - 4)$ $(1 -$ Ω

 $(1 - 4)$ $(1 -$

 Ω

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$
t(\tau,\sigma)=\left(\frac{n}{m}\right)^{-1}\Lambda(\tau,\sigma).
$$

It is easy to extend the density of subpermutations τ to a weighted permutation Q.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) Let n and m be integers s.t. $n \geq 2m$ and let τ be a permutation on $[m]$. Then, given permutations σ_1 and σ_2 on [n], we have

$$
|t(\tau,\sigma_1)-t(\tau,\sigma_2)|\leq 2m^2\cdot d_{\square}(\sigma_1,\sigma_2)
$$

Counting subpermutations

Example:
$$
\tau = (3, 1, 4, 2), \sigma = (5, 6, 2, 4, 7, 1, 3).
$$

 $\sigma = (5, 6, 2, 4, 7, 1, 3).$ $\sigma = (5, 6, 2, 4, 7, 1, 3).$

Let $\Lambda(\tau, \sigma)$ be the number of occurrences of τ as a subpermutation of σ . Let $t(\tau, \sigma)$ be the density of subpermutations τ in σ .

$$
t(\tau,\sigma)=\left(\frac{n}{m}\right)^{-1}\Lambda(\tau,\sigma).
$$

It is easy to extend the density of subpermutations τ to a weighted permutation Q.

Theorem (Hoppen, Kohayakawa, Sampaio, 2009) Let *n* and *m* be integers s.t. $n \ge 2m$ and let τ be a permutation on $[m]$. Then, given permutations σ_1 and σ_2 on [n], we have

$$
|t(\tau,\sigma_1)-t(\tau,\sigma_2)|\leq 2m^2\cdot d_{\square}(\sigma_1,\sigma_2)
$$

Moreover, given weighted permutations Q_1 and Q_2 on [n], we have

$$
|t(\tau,Q_1)-t(\tau,Q_2)|\leq 2m^2\cdot d_{\square}(Q_1,Q_2)
$$

 $(1 - 4)$ $(1 -$ Ω

A note on permutation regularity

Rudini Sampaio (DC-UFC, Fortaleza, Brazil)

This is joint work with Carlos Hoppen (IME-USP, São Paulo, Brazil) Yoshiharu Kohayakawa (IME-USP, São Paulo, Brazil)

November 05, 2009 (9:10 - 9:35 AM) LAGOS 2009 (Gramado, RS, Brazil)