FPT algorithms to recognize [well covered graphs](#page-26-0)

FPT algorithms to recognize well covered graphs

Rudini Sampaio Universidade Federal do Ceará (UFC) Fortaleza, Brazil

This is a joint work with Sulamita Klein (UFRJ, Rio de Janeiro, Brazil) Rafael Teixeira (UFC, Fortaleza, Brazil)

ICGT-2018, July 10, 10h30

KORKA EX YEAR ON A CHA

Well covered graphs

- \triangleright A graph G is **well covered** if all minimal vertex covers have the same size (are minimum)
- \triangleright C is vertex cover if every edge has an endpoint in C
- \triangleright C is minimal if it is not contained in any other vertex cover
- \triangleright vc(G) and vc⁺(G): minimum vs maximum minimal
- G is well covered if and only if $vc(G) = vc^+(G)$

- \triangleright C is a vertex cover \Longleftrightarrow V C is independent (no edges)
- ► C minimal vertex cover \iff V C maximal independent
- \triangleright A graph G is **well covered** if every maximal independent set has the same size $\alpha(G) = n - \nu c(G)$ (are maximum).

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

$\text{Example: Small well covered graphs}$

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in
$$
(q, q - 4)
$$

\nFPT in $vc(G)$
\nFPT in $vc^+(G)$
\nFPT in $\alpha = n - vc$

Figure: Small connected well covered graphs

K □ K K @ K K 통 K K 통 W S K Y Q Q Q

Example: Rook's graph

Figure: Rook's graph

A rook's graph is well covered: given any set of non-attacking rooks in a chesboard $n \times n$, we can place more non-attacking rooks until we have n rooks (one in each row and one in each column).

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

Results

Known results

- Introduced by [Plummer'70, JCTB]
- \triangleright coNP-Completo in $K_{1,4}$ -free graphs Caro et al.'96, JAlg
- ▶ Roller Coaster Conjecture [Michael and Traves'03, G&C]
- ▶ Cartesian product [Fradkin et al.'09, DM]
- Graphs with few P_4 's [Klein et al.'13, G&C]
- FPT $O^*(2.83^{\text{vc}})$ and $O^*(1.54^{\text{vc}^+})$ [Boria et al.'15, DAM]
- \blacktriangleright FPT cliquewidth and neighborhood diversity $O^*(2^{nd}) = O^*(2^{2^{vc}})$ [Alves et al.'18, to appear in TCS]

New results

- FPT $O^*(2^{vc})$ parameterized by $vc(G)$
- FPT $O^*(1.4656^{\nu c^+})$ parameterized by $\nu c^+(G)$
- **►** FPT in $\alpha(G) = n \nu c(G)$ in d-degenerate graphs
- ► Linear algorit in $(q, q 4)$ -graphs: FPT parameterized by q

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

Graph classes with few P_4 's

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KID KA KE KA TE KA TE KORO

Graph classes with few P_4 's

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KID KA KE KA TE KA TE KORO

Some operations: union, join and spider

- \triangleright Union $G = G_1 \cup G_2$: $V(G) = V(G_1) \cup V(G_2)$, $E(G) = E(G_1) \cup E(G_2)$
- \triangleright Join $G = G_1 \vee G_2$: $V(G) = V(G_1) \cup V(G_2)$, $E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}).$

G is a **pseudo-split** (R, C, S) if $V(G) = R \cup C \cup S$ st:

- \triangleright C induces a clique and S induces an independent set
- \blacktriangleright All edges from R to C and no edges from R to S

G is a **spider** if it is a pseudo-split (R, C, S) st:

- ▶ $C = \{c_1, ..., c_k\}$ and $S = \{s_1, ..., s_k\}$ for some $k \ge 2$
- **Thin spider**: s_i is adjacent to c_j if and only if $i = j$
- **Thick spider**: s_i is adjacent to c_j if and only if $i \neq j$

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

-
◆ ロ ▶ → 御 ▶ → 重 ▶ → 重 ▶ → 重 → つぬ◎

Graphs with few P_4 's

Theorem [Klein et al., 2013]: solved Union and Join

- ► $G_1 \cup G_2$ well covered if and only if G_1 and G_2 are well covered
- ► $G_1 \vee G_2$ well covered if and only if G_1 and G_2 are well covered and $\alpha(G_1) = \alpha(G_2)$.

Theorem: Pseudo-split and quasi-spiders

- ▶ Pseudo-split (R, C, S) well covered iff $R = ∅$ and every vertex of C has exactly one neighbor in S .
- ▶ Quasi spider (R, C, S) well covered iff $R = ∅$ and G is a thin spider with a vertex possibly substituted by a K_2 .
- \blacktriangleright Separable p-components also OK.

$(q, q - 4)$ -graphs and Extended P_4 -laden graphs

- \blacktriangleright Decomposition theorems in terms of union, join, pseudo-splits, quasi-spiders and separable p-components
- Compute $\alpha(G)$ and decide well coverdness in a DP manner

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

FPT algorithms to recognize [well covered graphs](#page-0-0)

Graph classes with few P_4 's

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KID KA KE KA TE KA TE KORO

Technique similar to Iterative Compression

- ▶ Obtain a minimum vertex cover C in time $O^*(2^{vc})$
- \blacktriangleright For every partition of C in two sets A and B:
	- \triangleright Check if $A \cup (N(B) \setminus B)$ is a minimal vertex cover
- \blacktriangleright Return the maximum minimal vertex cover
- \blacktriangleright Number of partitions: 2^{vc}

Figure: Vertex cover C

FPT algorithms to recognize [well covered graphs](#page-0-0)

Techinque similar to Iterative Compression

- ▶ Obtain a minimum vertex cover C in time $O^*(2^{vc})$
- \blacktriangleright For every partition of C in two sets A and B:
	- \triangleright Check if $A \cup (N(B) \setminus B)$ is a minimal vertex cover
- \blacktriangleright Return the maximum minimal vertex cover
- \blacktriangleright Number of partitions: 2^{vc}

Figure: Vertex cover C

KORKA EX YEAR ON A CHA

FPT algorithms to recognize [well covered graphs](#page-0-0)

Techinque similar to Iterative Compression

- ▶ Obtain a minimum vertex cover C in time $O^*(2^{vc})$
- \blacktriangleright For every partition of C in two sets A and B:
	- \triangleright Check if $A \cup (N(B) \setminus B)$ is a minimal vertex cover
- \blacktriangleright Return the maximum minimal vertex cover
- \blacktriangleright Number of partitions: 2^{vc}

Figure: Vertex cover C

KORKA EX YEAR ON A CHA

FPT algorithms to recognize [well covered graphs](#page-0-0)

Techinque similar to Iterative Compression

- ▶ Obtain a minimum vertex cover C in time $O^*(2^{vc})$
- \blacktriangleright For every partition of C in two sets A and B:
	- \triangleright Check if $A \cup (N(B) \setminus B)$ is a minimal vertex cover
- \blacktriangleright Return the maximum minimal vertex cover
- \blacktriangleright Number of partitions: 2^{vc}

Figure: Vertex cover C

KORKA EX YEAR ON A CHA

FPT algorithms to recognize [well covered graphs](#page-0-0)

vertex x_1

Figure: Branch in the vertices

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$

[FPT in](#page-14-0) $vc^+(G)$

[FPT in](#page-20-0) $\alpha = n - \nu c$

vertex x_1 x_1 $N(x_1)$

Figure: Branch in the vertices

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KORKARA KERKER OQO

Figure: Branch in the vertices

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(q, q - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KORKARA KERKER OQO

KOD KAR KED KED E YOUR

FPT algorithms to recognize [well covered graphs](#page-0-0)

 \blacktriangleright Recurrence in the number of leaves: $F(k) = F(k-1) + F(k-3)$

 \blacktriangleright F(k) = 1.4656^k

• Time
$$
O(1.4656^k \cdot n^2) = O^*(1.4656^k)
$$

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KORKARA KERKER OQO

 \blacktriangleright Recurrence in the number of leaves: $F(k) = F(k-1) + F(k-3)$ $F(k) = 1.4656^{k}$

• Time
$$
O(1.4656^k \cdot n^2) = O^*(1.4656^k)
$$

- \blacktriangleright Analyse each leaf: checking if it is a minimal vertex cover
- \triangleright Two leaves with different heights \Leftrightarrow G not well covered
- FPT time $O^*(1.4656^{\nu c^+})$
- ▶ Improving [Boria et al.'15, DAM] $O^*(1.5397^{\nu c^+})$

FPT algorithms to recognize [well covered graphs](#page-0-0)

FPT in $\alpha = n - \nu c(G)$ for graph classes

- \triangleright coW[2]-hard problem [Alves et al., 2018, TCS]
- \blacktriangleright 1st-order logic formulas:

$$
* \text{ Indep}(X) := \forall x, y \ (x \in X \land y \in X) \rightarrow \neg E(x, y)
$$

- $*$ Maximal(X) := $\forall y \exists x (y \notin X) \rightarrow (x \in X) \land E(x, y)$
- $*$ WellCov_k := $\forall_{\neq} x_1, ..., x_k \forall_{\neq} y_1, ..., y_{k-1}$: Indep({x₁, ..., x_k})) $\implies \neg \Big(\textit{Indep}(\{y_1,\ldots,y_{k-1}\}) ~\land~ \textit{Maximal}(\{y_1,\ldots,y_{k-1}\})\Big)$

$$
* WellCov := \bigwedge_{2 \leq k \leq \alpha} WellCov_k
$$

- Frick-Grohe Theorem: WellCov tem $\leq \alpha^2$ variables
- ▶ Well coveredness decision problem is FPT parameterized by $\alpha(\mathcal{G})$ in time $O(n^2)$ for graphs with bounded local treewidth

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0) FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KORKA ERKER EL VAN

FPT in $\alpha = n - \nu c(G)$ for graph classes

Lemma

- \blacktriangleright Fixed integer d, hereditary graph class $\mathcal C$
- Every $G \in \mathcal{C}$ has a vertex with degree at most d
- **► THEN** FPT in $\alpha(G) = n \nu c(G)$ in time $O((d+1)^{\alpha} \cdot (m+n))$ in the class C

Proof

- Search tree with height $\alpha(G)$
- ▶ Branch in a vertex v with $N[v] = \{u_1, \ldots, u_\ell\}, \ell \leq d + 1$
- In child i, remove $N[u_i]$. The remaining graph is in C
- Repeat. A leaf has height α or is empty
- \blacktriangleright Return NO, if there are two leaf nodes with different heights: two maximal independent sets with different sizes
- \blacktriangleright Return YES, otherwise

► Complexity
$$
O((d+1)^{\alpha} \cdot (m+n))
$$

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(a, a - 4)$ [FPT in](#page-10-0) $vc(G)$ [FPT in](#page-14-0) $vc^+(G)$ [FPT in](#page-20-0) $\alpha = n - \nu c$

KORANDA KERRE POLO

FPT in $\alpha = n - \nu c(G)$ for graph classes

Corollary

Well coveredness problem is FPT in $\alpha(G) = n - \nu c(G)$:

- **If** Graphs with bounded genus in time $O(7^{\alpha} \cdot (m + n))$
- \blacktriangleright d-degenerate graphs in time $O((d+1)^{\alpha} \cdot (m+n))$
	- \triangleright Graphs max degree Δ : $d = \Delta$
	- \triangleright Outerplanar graphs $(d = 2)$, Planar graphs $(d = 5)$

Proof

- Ok d-degenerate graphs
	- Euler for bounded genus $g: m = n + f 2 + 2g$
	- \blacktriangleright Triangulated faces (otherwise, add edges): $3f = 2m$
	- ▶ Assume $n > 12g$ (otherwise, constant time)

$$
m = n + (2/3)m - 2 + 2g \implies m = 3n + 6g - 6 \le (3.5)n - 6
$$

$$
\sum_{v \in V} d(v) = 2m \leq 7n - 12
$$

G has a vertex of degree less than 7

FPT algorithms to recognize [well covered graphs](#page-0-0)

Introduction

\nFPT in
$$
(q, q - 4)
$$

\nFPT in $vc(G)$

\nFPT in $vc^+(G)$

\nFPT in $\alpha = n - vc$

KORKA EX YEAR ON A CHA

Thank you !!

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(q, q - 4)$

[FPT in](#page-20-0) $\alpha = n - \nu c$

THANK YOU !!

Thank you !!

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(q, q - 4)$

[FPT in](#page-20-0) $\alpha = n - \nu c$

THANK YOU !!

Thank you !!

FPT algorithms to recognize [well covered graphs](#page-0-0)

[Introduction](#page-1-0)

FPT in $(q, q - 4)$

[FPT in](#page-20-0) $\alpha = n - \nu c$

THANK YOU !!

The Roller Coaster Conjecture

- \blacktriangleright $i_t(G)$: number of independent sets of size $0 \le t \le \alpha(G)$ [Alavi, Erdős, Malde, Schwenk, 1987] For every integer $q > 0$ and permutation π of [q], there is a graph G with $\alpha(G) = q$ and $i_{\pi(1)}(G) < i_{\pi(2)}(G) < \ldots < i_{\pi(a)}(G)$.
- A sequence $(i_0, \ldots, i_{\alpha(G)})$ is unimodal if there is k such that $i_0 \leq i_1 \leq \ldots \leq i_k \geq i_{k+1} \geq \ldots \geq i_{\alpha(G)}.$

[Brown et al., 2000] conjectured the independence sequence of any well-covered graph is unimodal

[Michael, Traves, 2003] disproved this conjecture, but showed that it is increasing in the 1st half: $i_0 < i_1 < \ldots < i_{\lceil \alpha/2 \rceil}$.

[Roller Coaster Conjecture]: 2nd half is any-ordered. That is, for any q and permutation π of $\{[q/2], \ldots, q\}$, there is a well covered graph with $\alpha(\mathsf{G}) = \mathsf{q}$ and $i_{\pi(\lceil \mathsf{q}/2 \rceil)} < \ldots < i_{\pi(\mathsf{q})}.$ [Matchett, 2004] proved for α < 11.

[Cuttle and Pebody, JCTB, 2017] proved the conjecture.

FPT algorithms to recognize [well covered graphs](#page-0-0)