
FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT algorithms to recognize
well covered graphs

Rudini Sampaio
Universidade Federal do Ceará (UFC)

Fortaleza, Brazil

This is a joint work with

Sulamita Klein (UFRJ, Rio de Janeiro, Brazil)
Rafael Teixeira (UFC, Fortaleza, Brazil)

ICGT-2018, July 10, 10h30



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Well covered graphs

I A graph G is well covered if all minimal vertex covers
have the same size (are minimum)

I C is vertex cover if every edge has an endpoint in C

I C is minimal if it is not contained in any other vertex cover

I vc(G ) and vc+(G ): minimum vs maximum minimal

I G is well covered if and only if vc(G ) = vc+(G )

Figure: Vertex cover / Independent set

I C is a vertex cover ⇐⇒ V − C is independent (no edges)

I C minimal vertex cover ⇐⇒ V − C maximal independent

I A graph G is well covered if every maximal independent
set has the same size α(G ) = n − vc(G ) (are maximum).



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Example: Small well covered graphs

Figure: Small connected well covered graphs



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Example: Rook’s graph

Figure: Rook’s graph

A rook’s graph is well covered: given any set of non-attacking
rooks in a chesboard n× n, we can place more non-attacking rooks
until we have n rooks (one in each row and one in each column).



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Results

Known results

I Introduced by [Plummer’70, JCTB]

I coNP-Completo in K1,4-free graphs [Caro et al.’96, JAlg]

I Roller Coaster Conjecture [Michael and Traves’03, G&C]

I Cartesian product [Fradkin et al.’09, DM]

I Graphs with few P4’s [Klein et al.’13, G&C]

I FPT O∗(2.83vc) and O∗(1.54vc+) [Boria et al.’15, DAM]

I FPT cliquewidth and neighborhood diversity
O∗(2nd) = O∗(22vc ) [Alves et al.’18, to appear in TCS]

New results

I FPT O∗(2vc) parameterized by vc(G )

I FPT O∗(1.4656vc+) parameterized by vc+(G )

I FPT in α(G ) = n − vc(G ) in d-degenerate graphs

I Linear algorit in (q, q − 4)-graphs: FPT parameterized by q



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Graph classes with few P4’s

Extended P4-laden (q, q − 4)-graph

P4-tidy P4-laden (7, 3)-graph

P4-extendible Extended P4-sparse P4-lite

Extended P4-reducible P4-sparse

P4-reducible

Cograph

q > 7

Figure: Known hierarchy of graphs with few P4’s



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Graph classes with few P4’s

Extended P4-laden (q, q − 4)-graph

P4-tidy P4-laden (7, 3)-graph

P4-extendible Extended P4-sparse P4-lite

Extended P4-reducible P4-sparse

P4-reducible

Cograph

q > 7

Figure: Blue graph classes: solved in [Klein et al., 2013, G&C]



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Some operations: union, join and spider

I Union G = G1 ∪ G2: V (G ) = V (G1) ∪ V (G2),
E (G ) = E (G1) ∪ E (G2)

I Join G = G1 ∨ G2: V (G ) = V (G1) ∪ V (G2),
E (G ) = E (G1) ∪ E (G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}).

G is a pseudo-split (R,C ,S) if V (G ) = R ∪ C ∪ S st:

I C induces a clique and S induces an independent set

I All edges from R to C and no edges from R to S

G is a spider if it is a pseudo-split (R,C ,S) st:

I C = {c1, . . . , ck} and S = {s1, . . . , sk} for some k ≥ 2

I Thin spider: si is adjacent to cj if and only if i = j

I Thick spider: si is adjacent to cj if and only if i 6= j



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Graphs with few P4’s

Theorem [Klein et al., 2013]: solved Union and Join

I G1 ∪ G2 well covered if and only if G1 and G2 are well covered

I G1 ∨ G2 well covered if and only if G1 and G2 are well covered
and α(G1) = α(G2).

Theorem: Pseudo-split and quasi-spiders

I Pseudo-split (R,C ,S) well covered iff R = ∅ and every vertex
of C has exactly one neighbor in S .

I Quasi spider (R,C ,S) well covered iff R = ∅ and G is a thin
spider with a vertex possibly substituted by a K2.

I Separable p-components also OK.

(q, q − 4)-graphs and Extended P4-laden graphs

I Decomposition theorems in terms of union, join,
pseudo-splits, quasi-spiders and separable p-components

I Compute α(G ) and decide well coverdness in a DP manner



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Graph classes with few P4’s

Extended P4-laden (q, q − 4)-graph

P4-tidy P4-laden (7, 3)-graph

P4-extendible Extended P4-sparse P4-lite

Extended P4-reducible P4-sparse

P4-reducible

Cograph

q > 7

Figure: Blue graph classes: solved in [Klein et al., 2013, G&C]



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc(G ) - time O∗(2vc)

Technique similar to Iterative Compression

I Obtain a minimum vertex cover C in time O∗(2vc)

I For every partition of C in two sets A and B:
I Check if A ∪ (N(B) \ B) is a minimal vertex cover

I Return the maximum minimal vertex cover

I Number of partitions: 2vc

C

Figure: Vertex cover C



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc(G ) - time O∗(2vc)

Techinque similar to Iterative Compression

I Obtain a minimum vertex cover C in time O∗(2vc)

I For every partition of C in two sets A and B:
I Check if A ∪ (N(B) \ B) is a minimal vertex cover

I Return the maximum minimal vertex cover

I Number of partitions: 2vc

A B

N(B) \ B

Figure: Vertex cover C



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc(G ) - time O∗(2vc)

Techinque similar to Iterative Compression

I Obtain a minimum vertex cover C in time O∗(2vc)

I For every partition of C in two sets A and B:
I Check if A ∪ (N(B) \ B) is a minimal vertex cover

I Return the maximum minimal vertex cover

I Number of partitions: 2vc

B A

N(B) \ B

Figure: Vertex cover C



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc(G ) - time O∗(2vc)

Techinque similar to Iterative Compression

I Obtain a minimum vertex cover C in time O∗(2vc)

I For every partition of C in two sets A and B:
I Check if A ∪ (N(B) \ B) is a minimal vertex cover

I Return the maximum minimal vertex cover

I Number of partitions: 2vc

B A

N(B) \ B

Figure: Vertex cover C



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

Figure: Branch in the vertices



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

Figure: Branch in the vertices



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

Figure: Branch in the vertices



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

Figure: Branch in the vertices



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

I Recurrence in the number of leaves:
F (k) = F (k − 1) + F (k − 3)

I F (k) = 1.4656k

I Time O(1.4656k · n2) = O∗(1.4656k)

I Analyse each leaf: checking if it is a minimal vertex cover

I Two leaves with different heights ⇔ G not well covered

I FPT time O∗(1.4656vc+)

I Improving [Boria et al.’15, DAM] O∗(1.5397vc+)



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in vc+(G ) - time O∗(1.4656vc
+

)

I Recurrence in the number of leaves:
F (k) = F (k − 1) + F (k − 3)

I F (k) = 1.4656k

I Time O(1.4656k · n2) = O∗(1.4656k)

I Analyse each leaf: checking if it is a minimal vertex cover

I Two leaves with different heights ⇔ G not well covered

I FPT time O∗(1.4656vc+)

I Improving [Boria et al.’15, DAM] O∗(1.5397vc+)



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in α = n − vc(G ) for graph classes

I coW[2]-hard problem [Alves et al., 2018, TCS]

I 1st-order logic formulas:

∗ Indep(X ) := ∀x , y (x ∈ X ∧y ∈ X )→ ¬E (x , y)

∗ Maximal(X ) := ∀y ∃x (y 6∈ X )→ (x ∈ X )∧E (x , y)

∗WellCovk := ∀6=x1, . . . , xk∀6=y1, . . . , yk−1 : Indep({x1, . . . , xk})

=⇒ ¬
(
Indep({y1, . . . , yk−1}) ∧ Maximal({y1, . . . , yk−1}

)
∗ WellCov :=

∧
2≤k≤α

WellCovk

I Frick-Grohe Theorem: WellCov tem ≤ α2 variables

I Well coveredness decision problem is FPT parameterized by
α(G ) in time O(n2) for graphs with bounded local treewidth



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in α = n − vc(G ) for graph classes

Lemma

I Fixed integer d , hereditary graph class C
I Every G ∈ C has a vertex with degree at most d

I THEN FPT in α(G ) = n − vc(G ) in time
O((d + 1)α · (m + n)) in the class C

Proof

I Search tree with height α(G )

I Branch in a vertex v with N[v ] = {u1, . . . , u`}, ` ≤ d + 1

I In child i , remove N[ui ]. The remaining graph is in C
I Repeat. A leaf has height α or is empty

I Return NO, if there are two leaf nodes with different heights:
two maximal independent sets with different sizes

I Return YES, otherwise

I Complexity O((d + 1)α · (m + n))



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

FPT in α = n − vc(G ) for graph classes

Corollary
Well coveredness problem is FPT in α(G ) = n − vc(G ):

I Graphs with bounded genus in time O(7α · (m + n))

I d-degenerate graphs in time O((d + 1)α · (m + n))
I Graphs max degree ∆: d = ∆
I Outerplanar graphs (d = 2), Planar graphs (d = 5)

Proof

Ok d-degenerate graphs

I Euler for bounded genus g : m = n + f − 2 + 2g

I Triangulated faces (otherwise, add edges): 3f = 2m

I Assume n ≥ 12g (otherwise, constant time)

I m = n+(2/3)m−2+2g =⇒ m = 3n+6g−6 ≤ (3.5)n−6

I
∑

v∈V d(v) = 2m ≤ 7n − 12

I G has a vertex of degree less than 7



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Thank you !!

THANK YOU !!



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Thank you !!

THANK YOU !!



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

Thank you !!

THANK YOU !!



FPT algorithms to
recognize

well covered graphs

Introduction

FPT in (q, q − 4)

FPT in vc(G)

FPT in vc+(G)

FPT in α = n − vc

The Roller Coaster Conjecture

I it(G ): number of independent sets of size 0 ≤ t ≤ α(G )

[Alavi, Erdős, Malde, Schwenk, 1987] For every integer q ≥ 0
and permutation π of [q], there is a graph G with α(G ) = q
and iπ(1)(G ) < iπ(2)(G ) < . . . < iπ(q)(G ).

I A sequence (i0, . . . , iα(G)) is unimodal if there is k such that
i0 ≤ i1 ≤ . . . ≤ ik ≥ ik+1 ≥ . . . ≥ iα(G).

[Brown et al., 2000] conjectured the independence sequence
of any well-covered graph is unimodal

[Michael, Traves, 2003] disproved this conjecture, but showed
that it is increasing in the 1st half: i0 < i1 < . . . < idα/2e.

[Roller Coaster Conjecture]: 2nd half is any-ordered. That is,
for any q and permutation π of {dq/2e, . . . , q}, there is a
well covered graph with α(G ) = q and iπ(dq/2e) < . . . < iπ(q).

[Matchett, 2004] proved for α ≤ 11.

[Cuttle and Pebody, JCTB, 2017] proved the conjecture.


	Introduction
	FPT in (q,q-4)
	FPT in vc(G)
	FPT in vc+(G)
	FPT in =n-vc

