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Graph Convexity

finite graph G = (V ,E )

colection C of subsets C ⊆ V

Definition: Graph Convexity

(G , C) is a graph convexity if

1 ∅,V ∈ C
2 C is closed under intersections

C ∈ C is called convex
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Convex Hull

Definition: Convex Hull

Convex hull of S ⊂ V relative to (G , C) is the smallest convex set C ⊇ S

Notation: H(S)

Also, H(S) is the intersection of all convex sets containing S
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Interval Function

A graph convexity (G , C) might be related to a function I , called Interval
Function

I : 2V → 2V

where

1 if S ∈ C, then I (S) = S

2 S ⊂ I (S) ⊆ H(S) otherwise

H(S) can be obtained from S by iteratively applying the interval function
until a convex set is reached.
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Interval Sets and Hull Sets

Graph convexity (G , C) and S ⊆ V (G )

1 S is an interval set if I (S) = V (G )

2 S is a hull set if H(S) = V (G )
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Convexity Parameters

Interval number cardinality of minimum interval set

Hull number cardinality of minimum hull set

Convexity number cardinality of maximum proper convex set

Carathéodory number smallest c such that for S ⊆ V (G ) and
u ∈ H(S) there exists F ⊆ S with |F | ≤ c and u ∈ H(F )

Radon number smallest k such that if S ⊆ V (G ) and |S | ≥ k then S
can be partitioned into S1 and S2 such that
H(S1) ∩ H(S2) 6= ∅
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P3 Convexity

The interval function assigns , for each S ⊆ V (G ), all vertices adjacent
to two distinct vertices of S .

CONVEX NOT CONVEX
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Basic problems

Given S ⊆ V (G ):

Compute I (S)

Decide if S is convex

Decide if S is an interval set

Compute H(S)

Decide if S is a hull set

All polynomial.
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Hull number - Motivation

Spread of infection in a square grid

In a grid, some cells are infected

Iteratively, an uninfected cell becomes infected if at least two of its
neighbours are so.

What is the minimum number of infected cells to guarantee that all
cells of the grid eventually become infected?

B. Bollobás
Coffee time in Memphis.
2006.
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Infection process
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Convexity parameters - General graphs

Theorem

It is NP-hard to determine the hull number, interval number,
convexity number, Carathéodory number or Radon number of a
general graph.

Theorem

It is polynomial to determine the hull number, interval number,
convexity number, Carathéodory number or Radon number for
cographs.

Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, On the Caratheodory Number for the
Convexity of Paths of Order Three, to appear.

Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, Toman, On the Radon Number for the
Convexity of Paths of Order Three, LATIN 2012.

Centeno, Dantas, Dourado, Rautenbach, Szwarcfiter, Convex Partitions of Graphs Induced
by Paths of Order Three, DMTCS 2010.

Centeno, Dourado, Penso, Rautenbach, Szwarcfiter, Irreversible Conversion of Graphs, TCS
2011.
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Our results

Theorem

There is a O(n) time algorithm to determine the hull number, interval
number, convexity number, Carathéodory number or Radon
number for (q, q − 4)-graphs.

Theorem

The Carathéodory number is at most 3 for every cograph, P4-sparse
graph and every connected (q, q − 4)-graph with at least q vertices.
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(q, q − 4)-graphs generalize cographs

P4

P4-free graphs (cographs)

= (4, 0) graphs

No induced P4s.

P4-sparse graphs

= (5, 1) graphs

Set of 5 vertices induces at most 1 P4.

(q, q − 4) graphs

Set of ≤ q vertices induces ≤ q − 4 P4s.
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(q, q − 4)-graphs: P4-connectivity

G is p-connected if, for any partition of V (G ) into non-empty A and
B, there exists at least one P4 with vertices in both A and B.

A p-component is a maximal p-connected subgraph.

p-connected

: one p-component

not p-connected

: two p-component
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(q, q − 4)-graphs: Primeval decomposition

For any graph G , exactly one of the following occurs:

Disconnected Codisconnected

p-connected
Separable p-component

B. Jamison and S. Olariu
P-components and the homogeneous decomposition of graphs.
SIAM Journal on Discrete Math, 1995.
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Application of decomposition to hull number

Let h(G ) be the hull number of G .

Lemma

If G = G1 ∪ G2, then

h(G ) = h(G1) + h(G2)

Lemma

If G = G1 ∨ G2 and

|V (G1)| ≥ 2 and |V (G2)| ≥ 2

then h(G ) = 2.

Lemma

If G = G1 ∨ G2 and

|V (G1)| = 1 and G2 has k components

then h(G ) = max{2, k}.
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To wrap things up

Theorem:

If G is (q, q− 4), p-connected and has ≥ q vertices, then G is isomorphic
to a spider graph.

In leaf nodes of the decomposition (G is p-connected), we have a
formula for h(G ) when G is a spider graph. We find it by brute force
if G has less than q vertices.

We can find h(G ) when G has a separable p-component.

We complete the algorithm using the primeval decomposition and
dynammic programming.

L. Babel e S. Olariu
On the structure of graphs with few P4s.
Discrete Applied Math, 1998.
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Future work

Consider tmax as the maximum number of times one needs to apply
the interval function from a hull set S to obtain V(G).

Solved by Benevides, Bollobás et. al. for square grids.
We proved it is NP-complete to answer if tmax ≤ k for fixed k ≥ 4
general graphs.
We proved it is polynomial to answer if tmax ≤ 2 for fixed k ≤ 2
general graphs.
What about k = 3?
We proved it is NP-complete to answer tmax ≤ k for bipartite and
planar graphs.
What about planar bipartite graphs?
OBS: Square grids are planar bipartite.
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Solved by Benevides, Bollobás et. al. for square grids.
We proved it is NP-complete to answer if tmax ≤ k for fixed k ≥ 4
general graphs.
We proved it is polynomial to answer if tmax ≤ 2 for fixed k ≤ 2
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The End

Thank You!!
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