Graphs with few P_4 's under the convexity of paths of order three

V. Campos¹ R. Sampaio¹ A. Silva¹ J. Szwarcfiter²

¹ParGO - Universidade Federal do Ceará, Brazil ²Universidade Federal do Rio de Janeiro, Brazil

May 30th, 2012

化原因 化原因

• finite graph G = (V, E)

- finite graph G = (V, E)
- colection C of subsets $C \subseteq V$

イロト 不同 ト イヨト イヨト

- finite graph G = (V, E)
- colection \mathcal{C} of subsets $\mathcal{C} \subseteq \mathcal{V}$

(G, C) is a graph convexity if

< 日 > < 四 > < 回 > < 回 > < 回 > <

- finite graph G = (V, E)
- colection \mathcal{C} of subsets $\mathcal{C} \subseteq \mathcal{V}$

(G, C) is a graph convexity if $\emptyset, V \in C$

< 日 > < 回 > < 回 > < 回 > < 回 > <

- finite graph G = (V, E)
- colection \mathcal{C} of subsets $\mathcal{C} \subseteq \mathcal{V}$

(G, C) is a graph convexity if

- ${f 2}$ C is closed under intersections

イロト イポト イヨト イヨト

- finite graph G = (V, E)
- colection \mathcal{C} of subsets $\mathcal{C} \subseteq \mathcal{V}$

- (G, C) is a graph convexity if

 - ${f O}$ C is closed under intersections
 - $C \in C$ is called *convex*

< 日 > < 四 > < 回 > < 回 > < 回 > <

Definition: Convex Hull

Convex hull of $S \subset V$ relative to (G, C) is the smallest convex set $C \supseteq S$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

Definition: Convex Hull

Convex hull of $S \subset V$ relative to (G, C) is the smallest convex set $C \supseteq S$

• Notation: H(S)

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Definition: Convex Hull

Convex hull of $S \subset V$ relative to (G, C) is the smallest convex set $C \supseteq S$

- Notation: H(S)
- Also, H(S) is the intersection of all convex sets containing S

イロト イポト イヨト イヨト

A graph convexity (G, C) might be related to a function *I*, called *Interval* Function

$$I: 2^V \rightarrow 2^V$$

where

• if
$$S \in C$$
, then $I(S) = S$
• $S \subset I(S) \subseteq H(S)$ otherwise

A graph convexity (G, C) might be related to a function *I*, called *Interval* Function

$$I: 2^V \rightarrow 2^V$$

where

• if
$$S \in C$$
, then $I(S) = S$
• $S \subset I(S) \subseteq H(S)$ otherwise

H(S) can be obtained from S by iteratively applying the interval function until a convex set is reached.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Graph convexity (G, C) and $S \subseteq V(G)$

• S is an interval set if I(S) = V(G)

• S is a hull set if
$$H(S) = V(G)$$

イロト イポト イヨト イヨト

Interval number cardinality of minimum interval set

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シ ④ ●

Interval number cardinality of minimum interval set **Hull number** cardinality of minimum hull set

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ─ 臣 ─ のへで

Interval number cardinality of minimum interval set Hull number cardinality of minimum hull set Convexity number cardinality of maximum proper convex set

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Interval number cardinality of minimum interval set **Hull number** cardinality of minimum hull set **Convexity number** cardinality of maximum proper convex set **Carathéodory number** smallest c such that for $S \subseteq V(G)$ and $u \in H(S)$ there exists $F \subseteq S$ with $|F| \leq c$ and $u \in H(F)$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Interval number cardinality of minimum interval set **Hull number** cardinality of minimum hull set **Convexity number** cardinality of maximum proper convex set **Carathéodory number** smallest c such that for $S \subseteq V(G)$ and $u \in H(S)$ there exists $F \subseteq S$ with $|F| \leq c$ and $u \in H(F)$ **Radon number** smallest k such that if $S \subseteq V(G)$ and $|S| \geq k$ then Scan be partitioned into S_1 and S_2 such that $H(S_1) \cap H(S_2) \neq \emptyset$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー ショル

The interval function assigns , for each $S \subseteq V(G)$, all vertices adjacent to two distinct vertices of S.

CONVEX

NOT CONVEX

Sac

그는 그

Given $S \subseteq V(G)$:

- Compute *I*(*S*)
- Decide if S is convex
- Decide if S is an interval set
- Compute H(S)
- Decide if S is a hull set

All polynomial.

• In a grid, some cells are infected

イロト イポト イヨト イヨト

- In a grid, some cells are infected
- Iteratively, an uninfected cell becomes infected if at least two of its neighbours are so.

イロト イポト イヨト イヨト

- In a grid, some cells are infected
- Iteratively, an uninfected cell becomes infected if at least two of its neighbours are so.
- What is the minimum number of infected cells to guarantee that all cells of the grid eventually become infected?

イロト イポト イヨト イヨト

I √Q (~

- In a grid, some cells are infected
- Iteratively, an uninfected cell becomes infected if at least two of its neighbours are so.
- What is the minimum number of infected cells to guarantee that all cells of the grid eventually become infected?

B. Bollobás*Coffee time in Memphis.*2006.

・ 同 ト ・ ヨ ト ・ ヨ ト

I na∩

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シ ④ ●

◆ロ > ◆ □ > ◆ 三 > ◆ 三 > ● の < ⊙

◆ロ > ◆ □ > ◆ 三 > ◆ 三 > ● の < ⊙

= 900

<ロ> (四) (四) (三) (三) (三)

5 DQC

<ロ> (四) (四) (三) (三) (三)

= 900

<ロ> <同> <同> < 同> < 同>

<ロ> <同> <同> < 同> < 同>

= 900

<ロ> <同> <同> < 同> < 同>

= 900

It is NP-hard to determine the **hull number**, **interval number**, **convexity number**, **Carathéodory number** or **Radon number** of a general graph.

- Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, *On the Caratheodory Number for the Convexity of Paths of Order Three*, to appear.
- Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, Toman, On the Radon Number for the Convexity of Paths of Order Three, LATIN 2012.
- Centeno, Dantas, Dourado, Rautenbach, Szwarcfiter, Convex Partitions of Graphs Induced by Paths of Order Three, DMTCS 2010.
- Centeno, Dourado, Penso, Rautenbach, Szwarcfiter, Irreversible Conversion of Graphs, TCS 2011.

It is NP-hard to determine the **hull number**, **interval number**, **convexity number**, **Carathéodory number** or **Radon number** of a general graph.

Theorem

It is polynomial to determine the **hull number**, **interval number**, **convexity number**, **Carathéodory number** or **Radon number** for cographs.

- Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, *On the Caratheodory Number for the Convexity of Paths of Order Three*, to appear.
- Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter, Toman, On the Radon Number for the Convexity of Paths of Order Three, LATIN 2012.
- Centeno, Dantas, Dourado, Rautenbach, Szwarcfiter, Convex Partitions of Graphs Induced by Paths of Order Three, DMTCS 2010.
- Centeno, Dourado, Penso, Rautenbach, Szwarcfiter, Irreversible Conversion of Graphs, TCS 2011.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー ショル

There is a O(n) time algorithm to determine the **hull number**, **interval number**, **convexity number**, **Carathéodory number** or **Radon number** for (q, q - 4)-graphs.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

There is a O(n) time algorithm to determine the hull number, interval number, convexity number, Carathéodory number or Radon number for (q, q - 4)-graphs.

Theorem

The Carathéodory number is at most 3 for every cograph, P_4 -sparse graph and every connected (q, q - 4)-graph with at least q vertices.

SOR

V. Campos, R. Sampaio, A. Silva, J. Szwarcfiter Graphs with few P_4 's under the convexity of paths of order three

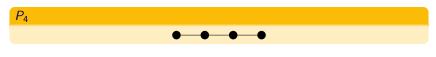
◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●



No induced P_4s .

V. Campos, R. Sampaio, A. Silva, J. Szwarcfiter Graphs with few P₄'s under the convexity of paths of order three

イロト イポト イヨト イヨト



P₄-free graphs (cographs)

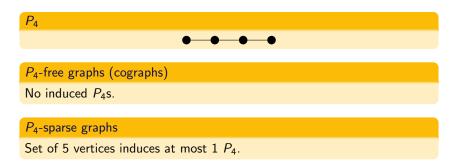
No induced P_4 s.

P₄-sparse graphs

Set of 5 vertices induces at most 1 P_4 .

€ 990

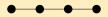
< 日 > < 四 > < 回 > < 回 > < 回 > <



(q, q - 4) graphs Set of $\leq q$ vertices induces $\leq q - 4 P_4$ s.

V. Campos, R. Sampaio, A. Silva, J. Szwarcfiter Graphs with few P₄'s under the convexity of paths of order three

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙



$$P_4$$
-free graphs (cographs) = (4,0) graphs

No induced P_4 s.

 P_4

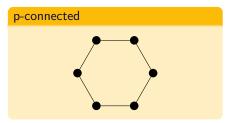
 P_4 -sparse graphs = (5,1) graphs

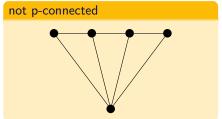
Set of 5 vertices induces at most 1 P_4 .

(q, q - 4) graphs Set of $\leq q$ vertices induces $\leq q - 4 P_4$ s.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

• G is p-connected if, for any partition of V(G) into non-empty A and B, there exists at least one P_4 with vertices in both A and B.

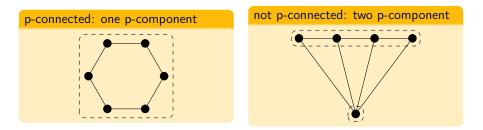




< 回 ト < 三 ト < 三 ト

Sac

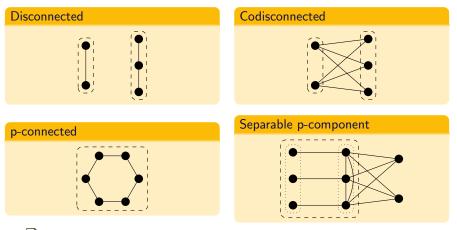
- G is p-connected if, for any partition of V(G) into non-empty A and B, there exists at least one P_4 with vertices in both A and B.
- A p-component is a maximal p-connected subgraph.



< 目 > < 目 >

(q, q - 4)-graphs: Primeval decomposition

For any graph G, exactly one of the following occurs:



B. Jamison and S. Olariu

P-components and the homogeneous decomposition of graphs. SIAM Journal on Discrete Math, 1995.

Let h(G) be the hull number of G.

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─ のへで

Let h(G) be the hull number of G.

Lemma

If $G = G_1 \cup G_2$, then

 $h(G) = h(G_1) + h(G_2)$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Let h(G) be the hull number of G.

Lemma

If $G = G_1 \cup G_2$, then

$$h(G) = h(G_1) + h(G_2)$$

Lemma

If $G = G_1 \vee G_2$ and • $|V(G_1)| \ge 2$ and $|V(G_2)| \ge 2$ then h(G) = 2.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Let h(G) be the hull number of G.

Lemma

If $G = G_1 \cup G_2$, then

$$h(G) = h(G_1) + h(G_2)$$

Lemma

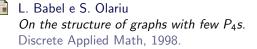
If $G = G_1 \vee G_2$ and • $|V(G_1)| \ge 2$ and $|V(G_2)| \ge 2$ then h(G) = 2.

Lemma

If $G = G_1 \vee G_2$ and • $|V(G_1)| = 1$ and G_2 has k components then $h(G) = max\{2, k\}$.

Theorem:

If G is (q, q-4), p-connected and has $\geq q$ vertices, then G is isomorphic to a spider graph.



Sac

∃ → < ∃ →</p>

To wrap things up

Theorem:

If G is (q, q - 4), p-connected and has $\geq q$ vertices, then G is isomorphic to a spider graph.

• In leaf nodes of the decomposition (G is p-connected), we have a formula for h(G) when G is a spider graph. We find it by brute force if G has less than q vertices.

프 🖌 🛪 프 🕨

To wrap things up

Theorem:

If G is (q, q - 4), p-connected and has $\geq q$ vertices, then G is isomorphic to a spider graph.

- In leaf nodes of the decomposition (G is p-connected), we have a formula for h(G) when G is a spider graph. We find it by brute force if G has less than q vertices.
- We can find h(G) when G has a separable p-component.

- 4 同 1 - 4 回 1 - 4 回 1

To wrap things up

Theorem:

If G is (q, q - 4), p-connected and has $\geq q$ vertices, then G is isomorphic to a spider graph.

- In leaf nodes of the decomposition (G is p-connected), we have a formula for h(G) when G is a spider graph. We find it by brute force if G has less than q vertices.
- We can find h(G) when G has a separable p-component.
- We complete the algorithm using the primeval decomposition and dynammic programming.

イロト イポト イラト イラト

• Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).

イロト 不同 トイヨト イヨト

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.

イロト イポト イヨト イヨト

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.

イロト イポト イヨト イヨト

I √Q (~

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.
 - We proved it is polynomial to answer if t_{max} ≤ 2 for fixed k ≤ 2 general graphs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.
 - We proved it is polynomial to answer if t_{max} ≤ 2 for fixed k ≤ 2 general graphs.
 - What about k = 3?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.
 - We proved it is polynomial to answer if t_{max} ≤ 2 for fixed k ≤ 2 general graphs.
 - What about k = 3?
 - We proved it is NP-complete to answer $t_{max} \leq k$ for bipartite and planar graphs.

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.
 - We proved it is polynomial to answer if t_{max} ≤ 2 for fixed k ≤ 2 general graphs.
 - What about k = 3?
 - We proved it is NP-complete to answer $t_{max} \leq k$ for bipartite and planar graphs.
 - What about planar bipartite graphs?

- Consider t_{max} as the maximum number of times one needs to apply the interval function from a hull set S to obtain V(G).
 - Solved by Benevides, Bollobás et. al. for square grids.
 - We proved it is NP-complete to answer if t_{max} ≤ k for fixed k ≥ 4 general graphs.
 - We proved it is polynomial to answer if t_{max} ≤ 2 for fixed k ≤ 2 general graphs.
 - What about k = 3?
 - We proved it is NP-complete to answer $t_{max} \leq k$ for bipartite and planar graphs.
 - What about planar bipartite graphs?
 - OBS: Square grids are planar bipartite.

Thank You!!