

Nonrepetitive, acyclic and clique colorings of graphs with few P_{4} 's

Eurinardo Costa, Rennan Dantas, Rudini Sampaio

ParGO Research Group Department of Computing Science Federal University of Ceara Fortaleza, Brazil

26 of Setember of 2012 (15:20 - 15:45) CLAIO/SBPO 2012 (Rio de Janeiro, RJ)

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-136-0) 26 of Setember of 2012 1 / 38

[Introduction](#page-2-0)

2 [Primeval and Modular decompositions](#page-31-0)

3 [Disjoint Union, Join and Spiders](#page-36-0)

4 [Coloring \(q,q-4\)-graphs](#page-98-0)

5 [Split decomposition](#page-119-0)

 $\rightarrow \equiv$ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 2 / 38

G.

 QQ

ヨッ

4 D F

Definitions

Proper k-coloring: Every color class induces a stable set.

4 日下

4 母 a.

 \Rightarrow \mathcal{A} . [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 3 / 38

D.

 299

 \Rightarrow

Definitions

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.

4 0 8

÷ n. ÷,

Definitions

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.

n.

4 **D** F

 QQQ

э

Definitions

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.

Definitions

- **•** Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- **Star coloring: Every pair of color classes induces a forest of stars.**
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.

Definitions

- **•** Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- **Star coloring: Every pair of color classes induces a forest of stars.**
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.
- Harmonious coloring: Every pair of color classes induced at most one edge.

Definitions

- **•** Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- **Star coloring: Every pair of color classes induces a forest of stars.**
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.
- Harmonious coloring: Every pair of color classes induced at most one edge.

$\chi(G) \leq \chi_a(G) \leq \chi_{st}(G) \leq \pi(G) \leq \chi_b(G)$

4 **D** F

Figure: C_4 with two colors

- A proper coloring, not an acyclic coloring.
- We have a cycle between a pair of color classes.

4 **D** F

 QQ

Figure: P_4 with two colors

- An acyclic coloring, not a star coloring.
- \bullet We have a P_4 with only two colors.

 \leftarrow \Box

э

 QQ

Figure: P_6 with three colors

- A star coloring, not a nonrepetitive coloring.
- . We have the pattern white-red-black.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 7 / 38

 \leftarrow \Box

 QQ

э

Figure: P_5 with three colors

- A nonrepetitive coloring, not an harmonic coloring.
- There are two edges betweeen a pair of color classes.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 8 / 38

 $-$

Definitions

Clique coloring : is a coloring such that every maximal clique receive at least two colors.

Definitions

Clique coloring : is a coloring such that every maximal clique receive at least two colors.

Figure: Graph 2-clique-colorable

Thue's construction

Theorem

A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

8 0 8 0 8 0 8 8 0 0 8 8 0 0

Thue's construction

Theorem

A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

• This implies that $\pi(P_n) = 3$ for every $n > 3$.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 10 / 38

Thue's construction

Theorem

A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

$$
\circ\bullet\bullet\circ\bullet\circ\bullet\circ\bullet\bullet\bullet\circ\bullet\bullet\bullet\circ\bullet\bullet
$$

- This implies that $\pi(P_n) = 3$ for every $n > 3$.
- . In 2002, Currie proved that

$$
\pi(C_n) = \begin{cases} 4, & \text{if } n \in \{5, 7, 9, 10, 14, 17\} \\ 3, & \text{otherwise.} \end{cases}
$$

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 10 / 38

つへへ

Acyclic coloring

- $\chi_a(G) \leq 5$ for planar graphs [Borodin, 1979].
- NP-Complete to deciding if $\chi_a(G) \leq 3$ [Kostochka, 1978].
- NP-hard for bipartite graphs [Coleman et al., 1986].

 Ω

Acyclic coloring

- $\bullet \ \chi_{\mathsf{a}}(G) \leq 5$ for planar graphs [Borodin, 1979].
- NP-Complete to deciding if $\chi_a(G) \leq 3$ [Kostochka, 1978].
- NP-hard for bipartite graphs [Coleman et al., 1986].

Star coloring

NP-hard for planar bipartite graphs [Albertson et al., 2004].

Non-repetitive coloring

Co-NP-Complete: determine if a coloring is non-repetitive (even for 4 colors) [Marx and Schaefer, 2009].

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 12 / 38

Non-repetitive coloring

Co-NP-Complete: determine if a coloring is non-repetitive (even for 4 colors) [Marx and Schaefer, 2009].

Harmonious coloring

- NP-hard for disconnected cographs [Bodlaender, 1989].
- NP-hard for interval graphs, permutation graphs and split graphs [Asdre et al., 2007].

つへへ

Clique coloring

- NP-hard for perfect graphs but polynomial for planar graphs [Kratochvíl and Tuza, 2002].
- In 2004, Bacsó et al. proved several results for 2-clique-colorable graphs.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 13 / 38

 Ω

Coloring graphs with few P_4 's

Many NP-hard problems were proved to be polynomial time solvable for cographs.

Coloring graphs with few P_4 's

- Many NP-hard problems were proved to be polynomial time solvable for cographs.
- Polynomial algorithms for acyclic and star colorings in cographs [Lyons, 2011].
- Polynomial algorithms for acyclic, star and harmonious colorings in $(q, q - 4)$ -graphs [Campos et al., 2011].

つへへ

Some superclasses of cographs

$(q, q - 4)$ -graph

- \bullet Every set with $\leq q$ vertices induces $\leq q-4$ induced P_4 's.
- \bullet Cographs = $(4, 0)$ -graphs.
- P_4 -sparse graphs = $(5, 1)$ -graphs.

KENKEN E

 QQ

Some superclasses of cographs

$(q, q - 4)$ -graph

- \bullet Every set with $\leq q$ vertices induces $\leq q-4$ induced P_4 's.
- Cographs $= (4, 0)$ -graphs.
- \bullet P₄-sparse graphs = (5, 1)-graphs.

P4-tidy

• Every induced P_4 $u - v - x - y$ has at most one vertex z such that $\{u, v, x, y, z\}$ induces more than one P_4 .

KENKEN B

 QQQ

Some superclasses of cographs

$(q, q - 4)$ -graph

- \bullet Every set with $\leq q$ vertices induces $\leq q-4$ induced P_4 's.
- \bullet Cographs = $(4, 0)$ -graphs.
- \bullet P₄-sparse graphs = (5, 1)-graphs.

P4-tidy

• Every induced P_4 $u - v - x - y$ has at most one vertex z such that $\{u, v, x, y, z\}$ induces more than one P_4 .

P4-laden

• Every set ≤ 6 vertices induces at most 2 P_4 's or is a split graph.

医心理 医心室 医心室

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and $(q, q - 4)$ -graphs, for every fixed q.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 16 / 38

4 **D** F

化重新 化重新

 QQ

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and $(q, q - 4)$ -graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 16 / 38

化重新 化重新

 Ω

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and $(q, q - 4)$ -graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Theorem 3

- Every P_4 -tidy is 3-clique-colorable.
- \bullet Every P_4 -laden is 2-clique-colorable.
- \bullet Every connected $(q, q 4)$ -graph with $\geq q$ vertices is 2-clique-colorable.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 16 / 38

化重变 化重变

$(g, g - 4)$ -graphs

Structural Theorem

A graph G is a $(q, q - 4)$ -graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two $(q, q 4)$ -graphs;
- (b) G is a spider (R, C, S) and $G[R]$ is a $(q, q 4)$ -graph;
- (c) G has $\lt q$ vertices or $V(G) = \emptyset$;
- (d) G contains a subgraph H, with bipartition (H_1, H_2) and $|V(H)| < q$, $G - H$ is a $(q, q - 4)$ -graph and every vertex of $G - H$ is adjacent to every vertex of H_1 and non-adjacent to every vertex of H_2 .

- 4 로 > - 4 로 > - 로 로

Structural Theorem

A graph G is a P_4 -tidy graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -tidy graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, C_5 , K_1 or $V(G) = \emptyset$;
- (c) G is a quasi-spider (R, C, S) and $G[R]$ is a P_4 -tidy graph.

 Ω

Structural Theorem

A graph G is a P_4 -tidy graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -tidy graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, C_5 , K_1 or $V(G) = \emptyset$;
- (c) G is a quasi-spider (R, C, S) and $G[R]$ is a P_4 -tidy graph.

A graph G is a P_4 -laden graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -laden graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, K_1 , $V(G) = \emptyset$ or a split graph;
- (c) G is a quasi-spider (R, C, S) and $G[R]$ is a P_4 -laden graph.

4 0 8

Figure: A spider

イロメ イ部メ イ君メ イ君メー Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 19 / 38

 298

重

Figure: A quasi-spider

[CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 20 / 38

4 0 8

一句 $\,$ \prec

K 등 K K 등 K

 298

重
Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 21 / 38

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max{\pi(G_1), \pi(G_2)},$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max{\pi(G_1), \pi(G_2)},$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Lemma

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{ \pi(G_1), \pi(G_2) \},\$ $\pi(G_1 \vee G_2) = \min \{ \pi(G_1) + n_2, \pi(G_2) + n_1 \}.$

Non-repetitive coloring for spiders

Lemma

Let G be a spider (R, C, S) , where $|C| = |S| = k$. Then

$$
\pi(G) = \begin{cases} k+1, & \text{if } R = \emptyset \text{ and } G \text{ is thick} \\ \pi(G[R]) + k, & \text{otherwise.} \end{cases}
$$

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 22 / 38

 QQ

э

Non-repetitive coloring for quasi-spiders

Lemma

Let G be a quasi-spider (R, C, S) such that min ${|C|, |S|} = k > 3$ and max $\{|C|, |S|\} = k + 1$. Let $H = K_2$ or $H = \overline{K_2}$ be the subgraph that replaced a vertex of $C \cup S$. Then

$$
\pi(G) = \begin{cases}\n\pi(G[R]) + k, & \text{if } H \in S \text{ and } G \text{ is thin,} \\
\pi(G[R]) + k, & \text{if } H \in S, G \text{ is thick} \\
\text{and } R \neq \emptyset, \\
\pi(G[R]) + k + 2, & \text{if } H \in C, G \text{ is thick} \\
\text{and } R = \emptyset, \\
\pi(G[R]) + k + 1, & \text{otherwise.}\n\end{cases}
$$

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max{\chi_c(G_1), \chi_c(G_2)}$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

つひひ

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max{\chi_c(G_1), \chi_c(G_2)}$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

 Ω

Lemma

Lemma

Lemma

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max{\chi_c(G_1), \chi_c(G_2)}$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

 Ω

Lemma

Lemma

Lemma

Lemma

Lemma

If $G - H$ is not empty, then $\chi_c(G) = 2$ (coloring the vertices of $G - H$ and H_2 with the color 1 and the vertices of H_1 with the color 2). If $G - H$ is empty, then G has less than q vertices and

$$
\chi_c(G) = \min_{\psi \in C_c(H)} \Big\{ k(\psi) \Big\},\,
$$

where $C_c(H)$ is the set of all clique-colorings of H.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 27 / 38

 200

Lemma

Given a coloring ψ of H, let $k_2(\psi)$ be the number of colors with no vertex of H_1 and with no vertex of H_2 which is neighbor of two vertices from H_1 with the same color. Then

$$
\pi(G) = \min \Big\{ \min_{\psi \in C_{\pi}(H)} \Big\{ k(\psi) + \max\{0, n' - k_2(\psi)\} \Big\},
$$

$$
\min_{\psi' \in C'_{\pi}(H)} \Big\{ k(\psi') + \max\{0, \pi(G - H) - k_2(\psi')\} \Big\} \Big\}
$$

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 29 / 38

つへへ
Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and $(q, q - 4)$ -graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Theorem 3

- Every P_4 -tidy is 3-clique-colorable.
- \bullet Every P_4 -laden is 2-clique-colorable.
- \bullet Every connected $(q, q 4)$ -graph with $\geq q$ vertices is 2-clique-colorable.

化重变 化重变

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 31 / 38

ヨメ メラメ

G.

 QQ

4 0 8

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

If G is P_4 -laden, then the clique chromatic number is at most 2.

 \sim Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 31 / 38

э

 QQ

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Theorem 4

There exist polynomial time algorithms to obtain an optimal acyclic coloring of distance hereditary graphs and graphs with a given split decomposition with bounded width.

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 32 / 38

化重新 化重新

 QQ

不自下

卢 \sim ×.

 $A \equiv \mathbb{R} \cup A \equiv \mathbb{R}$

 298

御き メモメ メモメ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 33 / 38

不自下 ×.

 298

 $AB + AB + AB +$ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 33 / 38

不自下 ×. 298

 $AB + AB + AB +$ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 33 / 38

不自下 ×. 298

 290

卢 \sim ×.

4 0 8

 $A \equiv \mathbb{R} \cup A \equiv \mathbb{R}$

不自下

卢 \sim $A \equiv \mathbf{1} \times A \equiv \mathbf{1}$

 298

Split decomposition (coloring : [M. Rao, 2008])

÷ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 35 / 38

 \sim

 \leftarrow \Box

Э× 活

 298

Split decomposition (acyclic coloring)

Split decomposition (acyclic coloring)

÷ Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 36 / 38

 \leftarrow \Box

 \sim Э× 造 298

$$
\bigoplus_{\text{Constant},\atop \text{remain,},\atop \text{remain}}\bigoplus_{\text{other}}\bigoplus_{\text{other}}
$$

Rennan Dantas (UFC) [CLAIO/SBPO 2012](#page-0-0) 26 of Setember of 2012 37 / 38

イロト イ部 トイミド イミド ニヨー のんぴ

Nonrepetitive, acyclic and clique colorings of graphs with few P_{4} 's

Eurinardo Costa, Rennan Dantas, Rudini Sampaio

ParGO Research Group Department of Computing Science Federal University of Ceara Fortaleza, Brazil

26 of Setember of 2012 (15:20 - 15:45) CLAIO/SBPO 2012 (Rio de Janeiro, RJ)

 $\mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B}$

 200