

Nonrepetitive, acyclic and clique colorings of graphs with few P_4 's

Eurinardo Costa, Rennan Dantas, Rudini Sampaio

ParGO Research Group Department of Computing Science Federal University of Ceara Fortaleza, Brazil

26 of Setember of 2012 (15:20 - 15:45) CLAIO/SBPO 2012 (Rio de Janeiro, RJ)

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012 1 / 38

イロト イポト イヨト イヨト

Summary

2 Primeval and Modular decompositions

- Disjoint Union, Join and Spiders 3
- Coloring (q,q-4)-graphs 4
- Split decomposition

3

Definitions

• Proper k-coloring: Every color class induces a stable set.

Rennan	Dantas ((UFC)	

CLAIO/SBPO 2012

26 of Setember of 2012 3 / 38

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definitions

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.

э

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.
- Harmonious coloring: Every pair of color classes induced at most one edge.

- Proper k-coloring: Every color class induces a stable set.
- Acycling coloring: Every pair of color classes induces a forest.
- Star coloring: Every pair of color classes induces a forest of stars.
- Nonrepetitive coloring: No path has an xx pattern of colors, where x is a sequence of colors.
- Harmonious coloring: Every pair of color classes induced at most one edge.

$$\chi(G) \leq \chi_{s}(G) \leq \chi_{st}(G) \leq \pi(G) \leq \chi_{h}(G)$$

Figure: C_4 with two colors

- A proper coloring, not an acyclic coloring.
- We have a cycle between a pair of color classes.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012 5 / 38

Figure: P_4 with two colors

- An acyclic coloring, not a star coloring.
- We have a P_4 with only two colors.

CLAIO/SBPO 2012

э

Figure: P_6 with three colors

- A star coloring, not a nonrepetitive coloring.
- We have the pattern *white-red-black*.

э

Figure: P_5 with three colors

- A nonrepetitive coloring, not an harmonic coloring.
- There are two edges betweeen a pair of color classes.

Definitions

• Clique coloring : is a coloring such that every maximal clique receive at least two colors.

Definitions

• Clique coloring : is a coloring such that every maximal clique receive at least two colors.

Figure: Graph 2-clique-colorable

Rennan Dantas (UFC)

CLAIO/SBPO 2012

Thue's construction

Theorem

 A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

┣᠆∩᠆╋᠆∩᠆╋᠆╋᠆ᠿ᠆ᠿ᠆ᠿ᠆ᠿ

CLAIO/SBPO 2012

26 of Setember of 2012

Thue's construction

Theorem

 A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

• This implies that $\pi(P_n) = 3$ for every n > 3.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Thue's construction

Theorem

 A celebrate theorem of Thue from 1906 asserts that there are arbitrarily long nonrepetitive sequences over the set of just 3 symbols.

- This implies that $\pi(P_n) = 3$ for every n > 3.
- In 2002, Currie proved that

$$\pi(C_n) = \begin{cases} 4, & \text{if } n \in \{5, 7, 9, 10, 14, 17\} \\ 3, & \text{otherwise.} \end{cases}$$

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Acyclic coloring

- $\chi_a(G) \leq 5$ for planar graphs [Borodin, 1979].
- NP-Complete to deciding if $\chi_a(G) \leq 3$ [Kostochka, 1978].
- NP-hard for bipartite graphs [Coleman et al., 1986].

Acyclic coloring

- $\chi_a(G) \leq 5$ for planar graphs [Borodin, 1979].
- NP-Complete to deciding if χ_a(G) ≤ 3 [Kostochka, 1978].
- NP-hard for bipartite graphs [Coleman et al., 1986].

Star coloring

• NP-hard for planar bipartite graphs [Albertson et al., 2004].

Non-repetitive coloring

• Co-NP-Complete: determine if a coloring is non-repetitive (even for 4 colors) [Marx and Schaefer, 2009].

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring

• Co-NP-Complete: determine if a coloring is non-repetitive (even for 4 colors) [Marx and Schaefer, 2009].

Harmonious coloring

- NP-hard for disconnected cographs [Bodlaender, 1989].
- NP-hard for interval graphs, permutation graphs and split graphs [Asdre et al., 2007].

Clique coloring

- NP-hard for perfect graphs but polynomial for planar graphs [Kratochvíl and Tuza, 2002].
- In 2004, Bacsó et al. proved several results for 2-clique-colorable graphs.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Coloring graphs with few P_4 's

• Many NP-hard problems were proved to be polynomial time solvable for cographs.

Coloring graphs with few P_4 's

- Many NP-hard problems were proved to be polynomial time solvable for cographs.
- Polynomial algorithms for acyclic and star colorings in cographs [Lyons, 2011].
- Polynomial algorithms for acyclic, star and harmonious colorings in (q, q 4)-graphs [Campos et al., 2011].

Some superclasses of cographs

(q, q-4)-graph

- Every set with $\leq q$ vertices induces $\leq q 4$ induced P_4 's.
- Cographs = (4, 0)-graphs.
- P_4 -sparse graphs = (5, 1)-graphs.

Some superclasses of cographs

(q, q-4)-graph

- Every set with $\leq q$ vertices induces $\leq q 4$ induced P_4 's.
- Cographs = (4, 0)-graphs.
- P_4 -sparse graphs = (5, 1)-graphs.

P₄-tidy

• Every induced P_4 u - v - x - y has at most one vertex z such that $\{u, v, x, y, z\}$ induces more than one P_4 .

Some superclasses of cographs

(q, q-4)-graph

- Every set with $\leq q$ vertices induces $\leq q 4$ induced P_4 's.
- Cographs = (4, 0)-graphs.
- P_4 -sparse graphs = (5, 1)-graphs.

P₄-tidy

• Every induced P_4 u - v - x - y has at most one vertex z such that $\{u, v, x, y, z\}$ induces more than one P_4 .

P_4 -laden

• Every set \leq 6 vertices induces at most 2 P_4 's or is a split graph.

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and (q, q - 4)-graphs, for every fixed q.

CLAIO/SBPO 2012

< □ > < ≥ > < ≥ > < ≥ > ≥
26 of Setember of 2012

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and (q, q - 4)-graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

< □ > < ≥ > < ≥ >
26 of Setember of 2012

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and (q, q - 4)-graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Theorem 3

- Every *P*₄-tidy is 3-clique-colorable.
- Every *P*₄-laden is 2-clique-colorable.
- Every connected (q, q 4)-graph with $\geq q$ vertices is 2-clique-colorable.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

(q, q - 4)-graphs

Structural Theorem

A graph G is a (q, q - 4)-graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two (q, q 4)-graphs;
- (b) G is a spider (R, C, S) and G[R] is a (q, q 4)-graph;
- (c) G has $\langle q$ vertices or $V(G) = \emptyset$;
- (d) G contains a subgraph H, with bipartition (H_1, H_2) and |V(H)| < q, G - H is a (q, q - 4)-graph and every vertex of G - H is adjacent to every vertex of H_1 and non-adjacent to every vertex of H_2 .

▲母 ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

Structural Theorem

A graph G is a P_4 -tidy graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -tidy graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, C_5 , K_1 or $V(G) = \emptyset$;
- (c) G is a quasi-spider (R, C, S) and G[R] is a P_4 -tidy graph.

Structural Theorem

A graph G is a P_4 -tidy graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -tidy graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, C_5 , K_1 or $V(G) = \emptyset$;
- (c) G is a quasi-spider (R, C, S) and G[R] is a P₄-tidy graph.

A graph G is a P_4 -laden graph if and only if exactly one of the following holds :

- (a) G is the union or the join of two P_4 -laden graphs;
- (b) G is isomorphic to P_5 , $\overline{P_5}$, K_1 , $V(G) = \emptyset$ or a split graph;
- (c) G is a quasi-spider (R, C, S) and G[R] is a P_4 -laden graph.

< □ > < □ > < □ > < □ > < □ > < □ >

Rennan	Dantas	(UFC)
Nennan	Dantas	

CLAIO/SBPO 2012

26 of Setember of 2012

イロト イヨト イヨト イヨト

19 / 38

Ξ.

Figure: A quasi-spider

Rennan	Dantas	(UFC)

CLAIO/SBPO 2012

< □ > < □ > < □ > < □ > < □ > < □ >
26 of Setember of 2012

20 / 38

3

Lemma

Lemma

Rennan Dantas (UFC)

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{\pi(G_1), \pi(G_2)\},\$ $\pi(G_1 \vee G_2) = \min \{\pi(G_1) + n_2, \pi(G_2) + n_1\}.$

CLAIO/SBPO 2012

ヨトィヨト

21 / 38

26 of Setember of 2012

Lemma

Lemma

Lemma

Lemma

Rennan Dantas (UFC)

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{\pi(G_1), \pi(G_2)\},\$ $\pi(G_1 \vee G_2) = \min \{\pi(G_1) + n_2, \pi(G_2) + n_1\}.$

ヨトィヨト

Lemma

Rennan Dantas (UFC)

Given graphs G_1 and G_2 with n_1 and n_2 vertices respectively : $\pi(G_1 \cup G_2) = \max \{\pi(G_1), \pi(G_2)\},\$ $\pi(G_1 \vee G_2) = \min \{\pi(G_1) + n_2, \pi(G_2) + n_1\}.$

∃ → (∃ →

Lemma

Lemma

Non-repetitive coloring for spiders

Lemma

Let G be a spider (R, C, S), where |C| = |S| = k. Then

$$\pi(G) = egin{cases} k+1, & ext{if } R=\emptyset ext{ and } G ext{ is thick} \ \pi(G[R])+k, & ext{otherwise}. \end{cases}$$

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

A B A A B A

22 / 38

3

Non-repetitive coloring for spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for spiders

Rennan Dantas (UFC)

Non-repetitive coloring for quasi-spiders

Lemma

Let G be a quasi-spider (R, C, S) such that min $\{|C|, |S|\} = k > 3$ and max $\{|C|, |S|\} = k + 1$. Let $H = K_2$ or $H = \overline{K_2}$ be the subgraph that replaced a vertex of $C \cup S$. Then

$$\pi(G) = \begin{cases} \pi(G[R]) + k, & \text{if } H \in S \text{ and } G \text{ is thin,} \\ \pi(G[R]) + k, & \text{if } H \in S, \ G \text{ is thick} \\ & \text{and } R \neq \emptyset, \\ \pi(G[R]) + k + 2, & \text{if } H \in C, \ G \text{ is thick} \\ & \text{and } R = \emptyset, \\ \pi(G[R]) + k + 1, & \text{otherwise.} \end{cases}$$

A B A A B A

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Non-repetitive coloring for quasi-spiders

Rennan Dantas (UFC)

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

26 / 38

Lemma

Lemma

Lemma

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

4 3 5 4 3 5

Lemma

Lemma

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

Rennan Dantas (UFC) CLAIO/SBPO 2012 26 of Setember of 2012 26 / 38

Lemma

Lemma

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012 26 / 38

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

26 / 38

Rennan Dantas (UFC)

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012 26 / 38

Lemma

Let G_1 and G_2 be two graphs. Then, $\chi_c(G_1 \cup G_2) = \max\{\chi_c(G_1), \chi_c(G_2)\}\)$ and $\chi_c(G_1 \vee G_2) = 2$. If G is a quasi-spider, then $\chi_c(G) = 2$.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

Lemma

Lemma

Lemma

Lemma

Lemma

If G - H is not empty, then $\chi_c(G) = 2$ (coloring the vertices of G - H and H_2 with the color 1 and the vertices of H_1 with the color 2). If G - H is empty, then G has less than q vertices and

$$\chi_{c}(G) = \min_{\psi \in C_{c}(H)} \Big\{ k(\psi) \Big\},$$

where $C_c(H)$ is the set of all clique-colorings of H.

Rennan Dantas (UFC)

26 of Setember of 2012

27 / 38

Lemma

Given a coloring ψ of H, let $k_2(\psi)$ be the number of colors with no vertex of H_1 and with no vertex of H_2 which is neighbor of two vertices from H_1 with the same color. Then

$$\pi(G) = \min \left\{ \min_{\psi \in C_{\pi}(H)} \left\{ k(\psi) + \max\{0, n' - k_{2}(\psi)\} \right\}, \\ \min_{\psi' \in C'_{\pi}(H)} \left\{ k(\psi') + \max\{0, \pi(G - H) - k_{2}(\psi')\} \right\} \right\}$$

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012 29 / 38

Main theorems

Theorem 1

There exist linear time algoritms to obtain the Thue and the clique chromatic numbers of P_4 -tidy and (q, q - 4)-graphs, for every fixed q.

Theorem 2

Every acyclic coloring of a cograph is also nonrepetitive.

Theorem 3

- Every *P*₄-tidy is 3-clique-colorable.
- Every *P*₄-laden is 2-clique-colorable.
- Every connected (q, q 4)-graph with $\geq q$ vertices is 2-clique-colorable.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

CLAIO/SBPO 2012

A B A A B A 26 of Setember of 2012 31 / 38

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

If G is P_4 -laden, then the clique chromatic number is at most 2.

CLAIO/SBPO 2012

3 × 4 3 × 26 of Setember of 2012 31 / 38

э

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

If G is P_4 -laden, then the clique chromatic number is at most 2.

CLAIO/SBPO 2012

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Lemma

If G is P_4 -tidy, then the clique chromatic number is at most 3.

Lemma

Theorem 4

There exist polynomial time algorithms to obtain an optimal acyclic coloring of distance hereditary graphs and graphs with a given split decomposition with bounded width.

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

- A TE N - A TE N

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

イロト イポト イヨト イヨト

33 / 38

Rennan Dantas (UFC)

CLAIO/SBPO 2012

< □ > < □ > < □ > < □ > < □ > < □ >
26 of Setember of 2012

33 / 38

Rennan Dantas (UFC)

CLAIO/SBPO 2012

< □ > < □ > < □ > < □ > < □ > < □ >
26 of Setember of 2012

33 / 38

Rennan Dantas (UFC)

CLAIO/SBPO 2012

< □ > < □ > < □ > < □ > < □ > < □ >
26 of Setember of 2012

33 / 38

CLAIO/SBPO 2012

Rennan Dantas (UFC)

26 of Setember of 2012

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

イロト イロト イヨト イヨト

34 / 38

Split decomposition (coloring : [M. Rao, 2008])

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

< A

35 / 38

Split decomposition (acyclic coloring)

Split decomposition (acyclic coloring)

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

< A

2 36/38

Rennan Dantas (UFC)

CLAIO/SBPO 2012

26 of Setember of 2012

Nonrepetitive, acyclic and clique colorings of graphs with few P_4 's

Eurinardo Costa, Rennan Dantas, Rudini Sampaio

ParGO Research Group Department of Computing Science Federal University of Ceara Fortaleza, Brazil

26 of Setember of 2012 (15:20 - 15:45) CLAIO/SBPO 2012 (Rio de Janeiro, RJ)

CLAIO/SBPO 2012