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Combinatorial games



What is a Combinatorial Game?

I Two-person games with perfect information and no chance moves.

I Initial conditions: initial position + the first player.

I Players alternate moves. Outcome: win, lose or tie (draw).

I Set of Terminal positions: from which no moves are possible.

I Finite games: rules to avoid loops (repetition of a position).

Variants of a Combinatorial Game
I Normal variant: the last to play wins (achievement).

I Misère variant: the last to play loses (avoidance).

I Optimization variant: A numerical parameter achieves some goal

Main question (decision problem)

I Zermelo-von Neumann Thm (1913): Given an instance of a game
without draw, one player has a winning strategy.

I Does the 1st (first) player have a winning strategy?



What is a Combinatorial Game?

I Two-person games with perfect information and no chance moves.

I Initial conditions: initial position + the first player.

I Players alternate moves. Outcome: win, lose or tie (draw).

I Set of Terminal positions: from which no moves are possible.

I Finite games: rules to avoid loops (repetition of a position).

Variants of a Combinatorial Game
I Normal variant: the last to play wins (achievement).

I Misère variant: the last to play loses (avoidance).

I Optimization variant: A numerical parameter achieves some goal

Classification of Combinatorial Games
I Impartial: both players have the same set of possible moves and

same objectives at any turn. The only difference is the first to play.

I Partizan: non-impartial games.
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Impartial Games

I Nim game (Bouton, 1901): n heaps with k1, . . . , kn objects. The
player chooses a heap and remove any number of objects from it.

I Node Kayles (Schaefer, 1978): Graph G . The player selects a vertex
inducing an independent set with the other selected vertices.

I Coloring game (Bodlaender, 1981): Graph G and set C of colors.
The player selects a vertex and proper colors it with a color in C .

I Geodesic game (Harary, 1981): Graph G . The player selects a vertex
which is not in a shortest path between two already selected vertices.

Nim/Geodesic

AB

I Sprague-Grundy Theory (1936): Every finite impartial game in
normal play is equivalent to one-heap game of Nim, and then can be
represented by a number. Nim is polynomial time solvable.

I Node-Kayles and Coloring are PSPACE-Complete (normal/misère).
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Positional Games: Tic tac toe, Hex, Maker Breaker, . . .

I Finite partizan combinatorial games with a finite set X (the board)
whose elements are called the positions,

I a family F of subsets of X - the winning (or losing) sets - and

I Conditions for winning.

I Players alternately claim unclaimed positions, until a player wins.

Types of positional games

I Maker-Maker (strong positional): 1st to claim “winning set” wins.
Ex: Tic tac toe, Hex.

I Avoider-Avoider: 1st to claim a “losing set” loses. Ex: Ramsey game
(SIM): positions are edges of K6 and “losing sets” are the triangles.

I Maker-Breaker: Maker wins by claiming a “winning set”; otherwise,
Breaker wins. Draw is not possible. Ex: POSCNF game: CNF
formula with non-negative literals. Maker wants to “make” a false
clause. Breaker wants to satisfy the formula.

I Avoider-Forcer: Avoider loses by claiming a “losing set”.



Positional Games: Tic tac toe, Hex, Maker Breaker, . . .
I Strategy-Stealing existencial argument [John Nash, 1947]: 1st

player can force at least a draw in strong positional games.

I Example (Hex): 1st player wins Hex, a game invented by Piet Hein
(1942), rediscovered by John Nash (1947) (A Beautiful Mind).
Open problem: Find an explicit winning strategy for n ≥ 10 in Hex.

I Example (Chess): It’s not a positional game, and is not solved.
However, white’s advantage is a consensus.

I [Reisch, 1981]: Given Hex configuration, deciding if the 1st player
wins is PSPACE-Complete.

I [Rahman, Watson’ 2023]: 6-uniform Maker-Breaker and
7-uniform Maker-Maker are PSPACE-Complete.



Positional Games: Tic tac toe, Hex, Maker Breaker, . . .

I Strategy-Stealing existencial argument (John Nash, 1947):
1st player can force at least a draw in strong positional games.

I Van der Waerden Thm (1927): ∀k, c : ∃n: if {1, . . . , n} is c-colored,
∃ monochromatic arithm progr of size k. W (k≥3)=[9, 35, 178, 1132, ?]

Maker-Breaker with c = 2 colors: W ∗(k≥3)=[5, 15, ?].

I Hales-Jewett Thm (1963): ∀k, c : ∃n: if n-dim kn cube is c-colored,
there is a monochromatic combinatorial line (rows, columns or main
diagonals). Generalized Tic-tac-toe: HJ∗(3) = HJ(3) = 3. HJ(4) =?

I Ramsey Thm (1930): ∀k, c : ∃n: if the edges of Kn are c-colored,
there is a monochromatic Kk . R(3) = 6. Clique game: R∗(3) = 5.

I Erdős-Selfridge Thm (1973) for Maker-Breaker: Breaker wins if∑
A∈F 2−|A| < 1/2. Or < 1 if Breaker is the first to play.

Recall the (main) types of positional games

I Strong positional: 1st to claim “winning set” wins. Ex: Tic tac toe.

I Maker-Breaker: Maker wants to claim a“winning set”; Breaker wants
the opposite. Draw is not possible.



Coloring Games (two optimization variants)



Coloring Games (two optimization variants)

Proper coloring

I The vertices of graph are colored

I Two adjacent vertices must receive distinct colors

I χ(G ): chromatic number (min number in a proper coloring)

Greedy coloring

I Proper vertex coloring / colors are integers

I Take an ordering of the vertices.

I A vertex must receive the minimum available color.

I Γ(G ): Grundy number (max number in a greedy coloring)

χ(G ) ≤ Γ(G )



Coloring Games (two optimization variants)

I Instance: a graph G and a set C of colors/integers

I Two players Alice and Bob alternate their turns in choosing an
uncolored vertex to be proper colored by an integer of C

I Alice starts and she wins if all vertices are successfully colored;
Otherwise, Bob wins the game

I Zermelo-von Neumann Th.: Alice or Bob has a winning strat

Graph coloring game (χg(G ) ≥ χ(G ))

I Alice and Bob may use any possible integer of C

I Game chromatic number χg (G ): minimum number of colors s.t.
Alice has a winning strategy in the graph coloring game

Greedy coloring game (χ(G ) ≤ Γg(G ) ≤ Γ(G ))

I Alice and Bob must use the smallest possible integer of C

I Game Grundy number Γg (G ): minimum number of colors s.t.
Alice has a winning strategy in the greedy coloring game



Coloring Games (example for both games)

I Complete bipartite graph without a matching

I If Alice is the first to play, Bob can force n colors: just play in the
non-neighbor of Alice’s last vertex.

I If Bob is the first to play, Alice wins with 2 colors.
Coloring game: Alice colors the non-neighbor with the other color.
Greedy game: color same side of Bob’s first vertex.

x1

x2

x3

x4

xn

y1

y2

y3

y4

yn

•
•
•

•
•
•



Coloring Games (example for both games)

I P4-sparse example: join of n P4’s
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Coloring Games (known results)
• First considered by [Brams] and described by [Gardner’81, Math.

Games column of Scientific American]

• Reinvented by [Bodlaender’91]: “The complexity of the Color
Construction Game is an interesting open problem”

• trees ≤ 4 [Faigle...’93], outerplanar ≤ 7 [Kierstead...’94]

• χg ≤ (χa + 1)2 acyclic chromatic number χa [Dinski,Zhu’99]

• χg (Pk) ≤ 3k + 2 for partial k trees [Zhu’00]

• χg (G ) ≤ 5 in cacti [Sidorowicz’07]

• Asympt. behavior χg (G (n, p)) [Bohman, Frieze, Sudakov’08]

• Ex.value χg cartes prod K2 w path/cycle/clique [Bartnick’08]

• Planar graphs: χg ≤ 17 [Zhu’08], χg ≤ 13 [Sekiguchi’14, girth≥ 4],
χg ≤ 5 [Nakprasit’18, girth≥ 7]

I χg (F ) poly trees no vertex deg 3 [Dunn et. al’15]:
“more than two decades later, this question remains open”.

I poly characterization game-perfect graphs [Andres,Lock’19]: “the
question of PSPACE-hardness remains open”.



Coloring Games (known results)

Greedy coloring game / Game Grundy number Γg(G )

I Introduced by [Havet, Zhu’13]

I Γg (G ) = χ(G ) in cographs [Havet,Zhu’13]

I Γg (F ) ≤ 3 in trees [Havet, Zhu’13]

I χg (G ) ≤ 7 in partial 2-trees [Havet, Zhu’13]

I Two questions of [Havet,Zhu’13]
I (*) χg (G) is upper bounded by a function of Γg (G)?
I (**) Γg (G) ≤ χg (G) for every graph G?

I (*) = NO [Krawczyk,Walczak’15]

I (**) is still open



Coloring games (decision problem definition)

Zhu’99 open question: Graph coloring game “exhibits some strange
properties”. Does Alice have a winning strategy with k + 1 colors if she
has one with k colors?

We define three decision problems for the graph coloring game:

I (Problem 1) Given G and k: χg (G ) ≤ k ?

I (Problem 2) Given G and k: Does Alice have a winning strategy
with k colors?

I (Problem 3) Given G and χ(G ): χg (G ) = χ(G ) ?

Problems 1 and 2 are equivalent iff Zhu’s question is true.
Problems 1 and 2 generalizations of Problem 3 - take k = χ(G )

Problem 3 PSPACE-hard → Problems 1 and 2 PSPACE-hard

Reduce POSCNF → Problem 3: build G s.t. we know χ(G ).



Coloring Games (our results)

I [Costa, Pessoa, Sampaio, Soares’ 2020]: TCS.
PSPACE-completeness of two graph coloring games.

Complexity results

I χg (G ) is PSPACE-hard answer Bodlaender’91 open question

I Γg (G ) is PSPACE-hard

I Both decision problems are PSPACE-Complete

Exact/algorithmic results

I Γg (G ) = χ(G ) poly for split graphs

I Γg (G ) = χ(G ) poly for extended P4-laden graphs, a class in the top
of a hierarchy of graphs with few P4’s

I In both cases, Alice wins with χ(G ) colors even if Bob can start the
game and pass any turn



Coloring Games (variants: starting and passing turns)
Graph YZ -coloring game gYZ (χYZ

g (G ) ≥ χ(G ))

I Y ∈ {A,B} and Z ∈ {A,B, no one}
I Y starts the game and Z may pass turns

I Alice and Bob may use any possible integer of C

I YZ -game chromatic number χYZ
g (G ): min number of colors s.t.

Alice has a winning strategy in the YZ -coloring game

I We omit Z when it is “no one”: χA
g (G ) = χg (G ) is the original game

chromatic number.

Greedy YZ -coloring game ggYZ (χ(G ) ≤ ΓYZ
g (G ) ≤ Γ(G ))

I Same idea, but they must use the min. possible integer of C

I YZ -game Grundy number ΓYZ
g (G ): min number of colors s.t.

Alice has a winning strat in the greedy YZ -coloring game

I We omit Z when it is “no one”: ΓA
g (G ) = Γg (G ) is the original game

Grundy number.

[Andres,Lock’19]: Introduced the variants gYZ . “The question of
PSPACE-hardness remains open for all these game variants”



Coloring Games (connected variants)

Connected coloring game cgY (χY
cg(G ) ≥ χ(G ))

I Similar to the graph coloring game: Alice starts and no one may
pass turns. But colored vertices must induce a connected subgraph

I Connected game chromatic number χcg (G ): min number of
colors s.t. Alice has a winning strategy in the cgA game.

I Introduced by [Charpentier,Hocquard,Sopena,Zhu’19]

I [CHSZ’19]: Alice wins with 2 colors in bipartite graphs

I [CHSZ’19]: Alice wins with 5 colors in outerplanar graphs

I [Bradshaw’20]: There are outerplanar 2-trees with χcg (G ) = 5

Connected greedy coloring game cggY (ΓY
cg(G ) ≥ Γ(G ))

I Similar to the greedy coloring game: Alice starts and no one may
pass turns. But colored vertices must induce a connected subgraph

I Connected game Grundy number ΓY
cg (G ): min number of colors

s.t. Alice has a winning strategy in the cggY game.



Coloring Game variants (our results)

I [Lima, Marcilon, Martins, Sampaio’ 2022]: TCS.
PSPACE-hardness of variants of the graph coloring game.

I [Lima, Marcilon, Martins, Sampaio’ 2023]: TCS.
The connected greedy coloring game.

Complexity results

I Game chromatic numbers χYZ
g are PSPACE-hard for all variants

I Game Grundy numbers ΓYZ
g are PSPACE-hard for all variants

I Connected game chromatic numbers χY
cg is PSPACE-hard

I Connected game Grundy numbers ΓY
cg is PSPACE-hard

I All the related decision problems are PSPACE-Complete, even if the
number of colors is the chromatic number

I Polynomial algorithms for split graphs.



Coloring game: χg : Reduction from POS-CNF

CNF formula, only positive variables, Alice and Bob alternate turns
setting variables true or false. Alice wins if the formula is true.

Example
(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).
Bob has a winning strategy:

• X1 True → X4 False; • X4 True → X1 False;

• X2 True → X3 False; • X3 True → X2 False.

Good points

I POS-CNF is PSPACE-Complete

I If she/he has a winning strategy in POS-CNF, she/he also has a
winning strategy if the opponent can pass turns.



Coloring game: χg : Important ingredient of the Reduction

K (1) s K (2)

r1 r2 r2β t1 t2 t2β. . . . . .Graph
F1

clique
β − 1

clique
β − 1

Lemma:
Alice has a winning strategy in F1 with 2β − 1 colors iff she colors vertex
s first.

Proof:
If Alice does not color s first, Bob can color β vertices rk/tk , forcing 2β
colors with clique K (i) ∪ s. If Alice colors s first, she can color K (1) and
K (2) before Bob colors β vertices rk/tk .



Coloring game: χg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

K (1) s K (2)

r1 r2 r2β t1 t2 t2β

y

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

. . . . . .Graph

F1



Coloring game: χg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

K (1) s K (2)

r1 r2 r2β t1 t2 t2β

y

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

. . . . . .Graph

F1



Coloring game: Γg(G ) is PSPACE-hard

Differently than the Graph Coloring Game, if Alice has a winning strategy
with k + 1 colors in the greedy coloring game she has one with k colors.

We define two decision problems for the greedy coloring game:

I (Problem 1’) Given G and k: Γg (G ) ≤ k ? That is: Does Alice have
a winning strategy with k colors?

I (Problem 2’) Given G and χ(G ): Γg (G ) = χ(G ) ?

Problems 1’ generalization of Problem 2’ - take k = χ(G )

Problem 2’ PSPACE-hard → Problem 1’ PSPACE-hard

Reduce POSCNF → Problem 2’: build G s.t. we know χ(G ).



Coloring game: Γg : Important ingredient of the Reduction

r s t

r1 r2 r3 t1 t2 t3

L0

Graph F2

clique
2β − 4

Lemma:
Alice has a winning strategy in F2 with 2β − 1 colors iff she colors vertex
s first.

Proof:
If Alice does not color s first (assume r wlg), Bob colors t2 and a black
vertex with 1, forcing 4 colors in a triangle s − t − ti . If Alice colors s
first, she can color r and t with 2 or 3 (black vertices will be 1), forcing 3
colors.



Coloring game: Γg : Reduction from POS-CNF

(X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X4) ∧ (X3 ∨ X4).

r s t

r1 r2 r3 t1 t2 t3

L0

y

y

x1 x2 x3 x4

x1 x2 x3 x4

`1,1 `1,2 `2,1 `2,2 `3,1 `3,2 `4,1 `4,2

L1 `1,0 L2 `2,0 L3 `3,0 L4 `4,0

Graph F2



Pursuit-evasion games: Cops and Robber

Game introduced in [Nowakowski, Winkler’ 1983]



Pursuit-evasion games: Cops and Robber
I Instance: Graph G and an integer k.
I The Game: k cops (first) and 1 robber are placed at vertices of G .
I The cops (first) and the robber may move along an edge.
I The cops win if a cop occupies the same vertex of the robber.
I The robber wins if a configuration is repeated.
I Cop number c(G ): min k s.t. the cops have a winning strategy.

Literature
I Petersen’s graph is the smallest graph with cop number =3

I [Kinnersley’ 2015] Cops-and-Robber is EXPTIME-complete

I [Meyniel’ 1985] Conjecture: c(G ) = O(
√
n)

I [Scott, Sudakov’ 2011] c(G ) = O(n / 2(1−o(1))·
√

log2 n)

I [Pra lat, Wormald’ 2015] Meyniel holds a.a.s for G (n, p)

I [Aigner, Fromme’ 1984] c(G ) ≤ 3 in planar graphs

I [Schröder’ 2001] c(G ) ≤ 1.5 · g + 3, where g is the genus

I [Bowler et al.’ 2011] c(G ) ≤ 1.333 · g + 3.333

I [Martins, Sampaio’ 2018] c(G ) ≤ 2 in (q, q-4)-graphs with n ≥ q



Pursuit-evasion games: Spy Game (s, d)
I [Cohen, Hilaire, Martins, Nisse, Pérennes’ 2016]: Paths/cycles.

I [Cohen, McInerney, Nisse, Pérennes’ 2020]: Polytime in trees.

I (s, d): spy speed s ≥ 2 and surveillance distance d ≥ 0

I Instance: Graph G and an integer k.

I The game: 1 spy (first) and k guards are placed on G . The spy may
move along ≤ s edges and then each guard may move along 1 edge.

I End: Spy wins if she reaches a vertex at dist > d from each guard after

the guards’ moves. The guards win if a game configuration is repeated.

I Guard number gns,d(G ): min k s.t. guards have winning strategy.

gn2,0(P4) = 2, gn2,1(P4) = 1

spy

g1 g2

a b c d

gn2,0(P5) = 3, gn2,1(P5) = 1

spy

g1 g2

a b c d e



Spy Game: known results

I [Cohen, Hilaire, Martins, Nisse, Pérennes’ 2016]: Paths/cycles.

I [Cohen, McInerney, Nisse, Pérennes’ 2020]: Polytime in trees.

I [Cohen, Martins, McInerney, Nisse, Pérennes, Sampaio’ 2018]: TCS
Spy-Game on graphs: Complexity and simple topologies.
NP-hard for any s ≥ 2 and d ≥ 0.

I [Costa, Martins, Sampaio’ 2022]: TCS
Spy game: FPT-algorithm, hardness and graph products.
W[2]-hard in bipartite graphs for any s ≥ 2 and d ≥ 0.
XP-algorithm on the number of guards.

Relation with other games

I Cops and Robber [Nowakowski, Winkler’83]: Similar for s = 1 if the
guards are placed first in the Spy Game. Very different for s ≥ 2.

I Eternal Domination [Goddard et al.’2005]: Spy Game with
surveillance distance s =∞ (or the diameter of the graph).



Spy Game: known results
[Costa, Martins, Sampaio’ 2022]: TCS
Spy game: FPT-algorithm, hardness and graph products.

I We begin the study of the spy game in grids and graph products.

I Strong product: gns,d(G1 � G2) ≤ gns,d(G1)× gns,d(G2).

I Strict upper bound: examples with King grids that match this upper
bound and others for which the guard number is smaller.

I Cartesian/lexicographical products: this upper bound fails.

I Lexicographical products: Exact value for any distance d ≥ 2.

I XP algorithm: The spy game decision problem is O(n3k+2)-time solvable
for every speed s ≥ 2 and distance d ≥ 0.

I FPT algorithm: Spy Game is FPT on the P4-fewness of the graph, solving
a game on graphs for many graph classes.

I W[2]-hardness even in bipartite graphs when parameterized by the number
k of guards, for every speed s ≥ 2 and distance d ≥ 0.

This hardness result generalizes the W[2]-hardness result of the spy game in general graphs [Cohen et al.’2018] and follows a similar (but

significantly different) structure of the reduction from Set Cover in [2018]. However, the extension to bipartite graphs brings much more

technical difficulties to the reduction, making this extension a relevant and non-trivial result.



Spy Game on the strong product (and King grids)

The strong product G1 � G2 has vertex set V (G1)× V (G2) and vertices (u1, u2)

and (v1, v2) are adjacent iff (a) u1 = v1 and u2v2 ∈ E(G2), or (b) u2 = v2 and

u1v1 ∈ E(G1), or (c) u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The King grid Kn,m is

the strong product of two path graphs Pn � Pm.

King Grid 4× 3 = P4 � P3

Theorem 1: Let s ≥ 2 and d ≥ 0.

gns,d(G1 � G2) ≤ gns,d(G1)× gns,d(G2).

Moreover, the equality holds if gns,d(G1) = 1 or gns,d(G2) = 1.

Proof sketch: Combining winning strategies in G1 and G2. For any
guard h1 in a vertex v1 of G1 and any guard h2 in a vertex v2 of G2,
consider a guard h1h2 in the vertex (v1, v2) of G1 � G2.



Spy Game: equality with gns,d(G1) = gns,d(G2) = 2

Lemma: For any d ≥ 0, s ≥ d + 2: gns,d(P2d+4) = 2,
and gns,d(P2d+4 � P2d+4) = 4.

s = 2

d = 0

s

1 3

2 1

s

3

2

s = 3

d = 11

2

s

3

1

2

3

s



Spy Game: strict UB with gns,d(G1) = gns,d(G2) = 2

Lemma: For any d ≥ 0, s ≥ 2d + 2: gns,d(P2d+3) = 2,
but gns,d(P2d+3 � P2d+3) = 2.

Example: surveillance distance d = 0 and spy speed s ≥ 2

1

2

s

1

2s

2 1s

2

1

s

Example: surveillance distance d = 1 and spy speed s ≥ 4

s

1

2 1

2

s

2 1 s

s

2

1



Spy Game: gns,d(G1) and gns,d(G2) greater than 2

Lemma: Let d ≥ 0, 2 ≤ k ≤ 2d + 2 and s ≥ (k − 1)(2d + 3). Then
gns,d (Pk(2d+3)) = k + 1 and k2 ≤ gns,d (Pk(2d+3) � Pk(2d+3)) ≤ (k + 1)2.

Proof: The vertex set of Pk(2d+3) � Pk(2d+3) can be partitioned into k2 subsets of
vertices which induces the King grid P2d+3 � P2d+3 each. If one of these subsets does
not have a guard at some moment of the game, the spy can go to the vertex in the
center of this subset and no guard can surveil the spy, which wins the game, since the
distance from the center to the border is d + 1 in the King grid P2d+3 � P2d+3. The
spy can do this since her speed is at least (k − 1)(2d + 3) (notice that the diameter is
k(2d + 3) − 1 and the maximum distance between two centers of this subsets inducing
the King grid P2d+3 � P2d+3 is at most k(2d + 3) − 1 − 2(d + 1) = (k − 1)(2d + 3)).
Thus, at least k2 guards are necessary. Moreover, in [Cohen et al.’18], the exact value
of gns,d (Pn) was determined for any triple (s ≥ 2, d ≥ 0, n ≥ 2):

gns,d (Pn) =

 n

2d + 2 +
⌊

2d
s−1

⌋


With this, we have that gns,d (Pk(2d+3)) = k + 1 for any d ≥ 0, 2 ≤ k ≤ 2d + 2 and

s ≥ (k − 1)(2d + 3) > 2d + 1. Then, from the upper bound, (k + 1)2 guards are

sufficient and we are done.



Spy Game: Cartesian and Lexicographical products

Lemma: gn2,1(P5�P5) > gn2,1(P5)2 = 1
gn2,1(P5 · P5) > gn2,1(P5)2 = 1

s

1

s 1

1

s 1

s



Spy Game: Lexicographical product: exact value for d ≥ 2

Theorem: Let s ≥ 2, d ≥ 2 and let G1 and G2 be two graphs.
If G1 has no isolated vertex, then:

gns,d(G1 · G2) = gns,d(G1).

Otherwise:

gns,d(G1 · G2) = max { gns,d(G1), gns,d(G2) }.



Spy Game: XP-algorithm on the number of guards

Theorem: k ≥ 1, s ≥ 2 and d ≥ 0. It is possible to decide in XP time
O(n3k+2) if the spy has a winning strategy against k guards in the
(s, d)-spy game on G .

Proof: 2nk+1 game configurations.
Spy config: the spy is the next to move (spy/guards placed at vertices).
Guard config: the guards are the next to move.
Spy winning configuration: spy at distance > d from any guard.
Mark all spy winning configurations. Repeat the following until no more
configurations are marked. Mark the guard configurations that only lead
to marked spy configurations (in words, any guards’ move will lead to a
spy winning configuration). Mark the spy configurations that lead to at
least one marked guard configuration (in words, there is a spy’s move
which leads to a spy winning configuration).

If there is a vertex u such that any spy config with the spy in u is marked, then

the spy has a winning strategy (by occupying vertex u first). Otherwise, the

guards have a winning strategy.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s = 3

d = 1

p = 2

q = 0

K = 3

z0*

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,2 u2,2 u3,2 u4,2 u5,2 u6,2 u7,2 u8,2 u9,2

s = 4 or 5

d = 2

p = 3

q = 0

K = 3

z0*

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

s = 5 or 6 or 7

d = 3

p = 4

q = 0

K = 3

z0*

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,4 u2,4 u3,4 u4,4 u5,4 u6,4 u7,4 u8,4 u9,4

.

.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s ≥ 3
d = 0

p = 1

q = 1

K = 5

*

••
z0 z1

z ′1

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

s ≥ 5
d = 1

p = 2

q = 2

K = 5

*

••
z0 z1

z ′1

z2

z ′2

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,2 u2,2 u3,2 u4,2 u5,2 u6,2 u7,2 u8,2 u9,2

s ≥ 7
d = 2

p = 3

q = 3

K = 5

*

• •
z0 z1

z ′1

z2

z ′2

z3

z ′3

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

.

.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s = 2

d = 0

p = 1

q = 0

K = 5

*••

•

z0

z ′1 z ′2

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

s = 4

d = 1

p = 2

q = 1

K = 5

*

•

•

z0 z1

z ′1 z ′2 z ′3

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,2 u2,2 u3,2 u4,2 u5,2 u6,2 u7,2 u8,2 u9,2

s = 6

d = 2

p = 3

q = 2

K = 5

*

•

•

z0 z1 z2

z ′1 z ′4

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

.

.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s = 3

d = 3

p = 5

q = 0

K = 3

*z0

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,5 u2,5 u3,5 u4,5 u5,5 u6,5 u7,5 u8,5 u9,5

s = 3

d = 5

p = 8

q = 0

K = 3

*z0

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,8 u2,8 u3,8 u4,8 u5,8 u6,8 u7,8 u8,8 u9,8

s = 4

d = 5

p = 7

q = 0

K = 3

*z0

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,7 u2,7 u3,7 u4,7 u5,7 u6,7 u7,7 u8,7 u9,7

.

.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s = 3

d = 2

p = 4

q = 4

K = 5

*
• •
z0 z1 z4

z ′1 z ′4

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,4 u2,4 u3,4 u4,4 u5,4 u6,4 u7,4 u8,4 u9,4

s = 4

d = 3

p = 5

q = 5

K = 5

*
• •
z0 z1 z5

z ′1 z ′5

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,5 u2,5 u3,5 u4,5 u5,5 u6,5 u7,5 u8,5 u9,5

s = 3

d = 4

p = 7

q = 7

K = 5

*
• •
z0 z1 z7

z ′1 z ′7

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,7 u2,7 u3,7 u4,7 u5,7 u6,7 u7,7 u8,7 u9,7

.

.



Spy Game: W[2]-hardness in bipartite graphs

I Case 1: s > 2d + 2

I Case 2: s = 2d + 2

I Case 3: d + 1 < s < 2d + 2

I Case 4: s ≤ d + 1 and s < 2(r + 1)

I Case 5: s ≤ d + 1 and s = 2(r + 1)

I Case 6: s ≤ d + 1 and s > 2(r + 1)

where r = d mod (s − 1) is the remainder of the division of d by s − 1.

s = 2

d = 1

p = 3

q = 2

K = 5

*
•

•

z0 z1 z2

z ′1 z ′4

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

s = 2

d = 2

p = 5

q = 4

K = 5

*
•

•

z0 z1 z4

z ′1 z ′6

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,5 u2,5 u3,5 u4,5 u5,5 u6,5 u7,5 u8,5 u9,5

s = 4

d = 4

p = 6

q = 5

K = 5

*
•

•

z0 z1 z5

z ′1 z ′7

S1
•

S2 S3
•

S4 S5
•

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,6 u2,6 u3,6 u4,6 u5,6 u6,6 u7,6 u8,6 u9,6

.

.



Convexity Games



Convexity games: The General Position Game

I Points in general position: no three points in the same line.

I Dudeney’s “Puzzle with Pawns” in the book “Amusements in
Mathematics” of 1917.

I “No-Three-In-Line Problem”: Given n, find the maximum number of
points in general position in the n × n grid.

I CS variation: given points in the plane n × n, find the maximum
number of points in general position.

I Graph variation: given a graph, select the maximum number of
vertices in general position: no selected vertex is in the shortest path
between other two selected vertices.



GP-game: General Position versus Geodesic Convexity

• Geodesic closure I [S ] of S : S and all vertices in shortest paths
between two vertices of S .

• Equivalent to the Interval Set of the geodesic convexity.

I General Position Problem: given a graph G , select the max number
of vertices in general position: No selected vertex is in a geodesic
between other two selected vertices

I Max Geodesic Convex Set: given G , select the maximum number of
vertices such that: No non-selected vertex is
in a geodesic between two selected vertices

• Classical problems: There are many papers investigating them



General Position Game Variants
I Buckley-Harary-1985’ geodesic game:

two players (A/B) alternately select vertices which are not in the
geodesic closure of the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

I Klavžar-Neethu-Chandran-2021’ general position game:
two players (A/B) alternately select vertices which are in general
position with the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

• Normal variant: The last to play wins (achievement game)

• Misèrè variant: The last to play loses (avoidance game)

I Zermelo’1913: One of the players has a winning strategy

I Problem: Given a graph, Player A has a winning strategy?



General Position Game Variants
I Buckley-Harary-1985’ geodesic game:

two players (A/B) alternately select vertices which are not in the
geodesic closure of the vertices selected so far.

v1

4
v2

3
v3 v4 v5

1
v6 v7 v8

2
v9

5

I Klavžar-Neethu-Chandran-2021’ general position game:
two players (A/B) alternately select vertices which are in general
position with the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

• Normal variant: The last to play wins (achievement game)

• Misèrè variant: The last to play loses (avoidance game)

I Zermelo’1913: One of the players has a winning strategy

I Problem: Given a graph, Player A has a winning strategy?



General Position Game Variants
I Buckley-Harary-1985’ geodesic game:

two players (A/B) alternately select vertices which are not in the
geodesic closure of the vertices selected so far.

v1

3
v2 v3 v4 v5

1
v6 v7 v8 v9

2

I Klavžar-Neethu-Chandran-2021’ general position game:
two players (A/B) alternately select vertices which are in general
position with the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

• Normal variant: The last to play wins (achievement game)

• Misèrè variant: The last to play loses (avoidance game)

I Zermelo’1913: One of the players has a winning strategy

I Problem: Given a graph, Player A has a winning strategy?



General Position Game Variants
I Buckley-Harary-1985’ geodesic game:

two players (A/B) alternately select vertices which are not in the
geodesic closure of the vertices selected so far.

v1

3
v2 v3 v4 v5

1
v6 v7 v8

2
v9

4

I Klavžar-Neethu-Chandran-2021’ general position game:
two players (A/B) alternately select vertices which are in general
position with the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

• Normal variant: The last to play wins (achievement game)

• Misèrè variant: The last to play loses (avoidance game)

I Zermelo’1913: One of the players has a winning strategy

I Problem: Given a graph, Player A has a winning strategy?



General Position Game Variants
I Buckley-Harary-1985’ geodesic game:

two players (A/B) alternately select vertices which are not in the
geodesic closure of the vertices selected so far.

v1

4
v2

3
v3 v4 v5

1
v6 v7 v8 v9

2

I Klavžar-Neethu-Chandran-2021’ general position game:
two players (A/B) alternately select vertices which are in general
position with the vertices selected so far.

v1 v2 v3 v4 v5

1
v6 v7 v8

2
v9

• Normal variant: The last to play wins (achievement game)

• Misèrè variant: The last to play loses (avoidance game)

I Zermelo’1913: One of the players has a winning strategy

I Problem: Given a graph, Player A has a winning strategy?



Geodesic games: Known results

Geodesic games

• [Buckley-Harary-1985]: Solved for some graph classes.

• [Nečásková-1988]: Solved for wheel graphs.

• [Haynes-Henning-Tiller-2003]: Trees and complete multipartite.

General Position games

• [Chandran-Klavžar-Neethu-2021]: achievement game on Hamming
graphs, Cartesian and lexicographic products.



General Position Game: Our results

[Chandran, Klavzar, Neethu, Sampaio’ 2022]: TCS. The general position
avoidance game and hardness of general position games.

I We prove that the 2 games are PSPACE-Complete even in graphs
with diameter at most 4:

• 2021’ achievement general position game
• 2021’ avoidance general position game

I For this, we had to prove that the misèrè versions of the
1978’Node-Kayles game and the 1978’Clique-Forming game are
PSPACE-Complete: games of obtaining an indep. set or a clique,
resp., where the loser is the last to pick a vertex.

I Polytime algorithms of gp-avoidance game in rook’s graphs, grids,
cylinders, and lexicographic products with complete second factors.



GP game: Examples

Player A wins the normal gp

and clique-forming games

1

2

3

Player A wins the misèrè gp

and clique-forming games

1

2 3 4



GP game: normal is PSPACE-Complete

Reduction from the Clique-Forming game: diameter 4 graph.

Graph H

Graph G u

v1 v2 v3

f1 f2 f3

Player A has a winning strategy in the gp-achievement game
if and only if

Player B has a winning strategy in the Clique-forming game



GP game: misère is PSPACE-Complete

Reduction from the Clique-Forming game: diameter 4 graph.

Graph H

Graph G u

v1 v2 v3

a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 a3 b3 c3 d3 e3

Player A has a winning strategy in the gp-achievement game
if and only if

Player B has a winning strategy in the Clique-forming game



Hull Game: Our last results

[Araújo, Folz, Freitas, Sampaio’ 2023]: LAGOS. Complexity and winning
strategies of graph convexity games.

I We prove that the hull game is PSPACE-Complete even in graphs
with diameter 2 in the normal and the misère variants:

• 1984’ hull game

I Reduction from the normal and misèrè variants of the
1978’Node-Kayles game and the 1978’Clique-Forming game, which
are PSPACE-Complete: games of obtaining an indep. set or a clique,
resp., where the loser is the last to pick a vertex.

I Polytime algorithms of convex geometries.

• geodesic convexity and Ptolemaic graphs
• monophonic convexity and chordal graphs
• etc...



The END

The END

Questions ??


